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Optimal Sensor Location and
Experimental Accuracy

Optimal sensor locations and the information content obtained when estimating ther-
mal parameters using the inverse method are significantly affected by uncertainties

in sensor position and in the system parameters. This paper describes the effects of
these uncertainties. It is shown that the effect of sensor location uncertainties can be
reduced by placing temperature sensors in locations of minimum heat flux. In transient
experiments, the uncertainties in the boundary conditions have the greatest effect at
points of high heat flux and cause the optimal sensor locations to move from the
boundary with the highest convective heat transfer coefficient to the boundary with
the lowest in an abrupt manner.

Introduction

Almost all predictions and simulations of thermal systems
require the specification of properties, boundary conditions, and
other relevant parameters associated with the model of the sys-
tem.' These are usually determined by specially designed exper-
iments. For example, guarded hot box experiments are used to
determine the thermal conductivity by measuring the tempera-
ture difference across a layer through which a known heat flux
is conducted and applying Fourier’s law directly. Other times,
the measured quantities cannot be directly used and the theory
of inverse problems must be employed. In this method a namber
of measured responses are compared with an analytical or nu-
merical solution to estimate the desired properties. For example,
if the temperature response of an infinite conductivity sample is
measured, the surface heat transfer coefficient may be estimated
through matching the results of the differential equation

oT

pCVE = h(DA(T. - T) = Q1) (1)
with the temperatures measured over time by assuming values
of A(¢). This is normally done by using a least squares approach
in which the value of A(#) is that which minimizes the sum of
the squares of the difference between the measured tempera-
tures, T,(t.), and the predicted temperatures, ®(#,). As is well
known, this is an ill conditioned problem and special mathemati-
cal techniques, such as regularization, must be employed ( Alifa-
nov 1994; Beck and Arnold 1977).

In previous papers (Emery and Fadale, 1996; Fadale, et al.,
1995a), we have discussed how to optimize the design of an
experiment to determine one or more parameters by choosing
optimal sensor locations, sampling times, duration of the experi-
ment, and the variables to be measured. By ‘‘optimizing’’ we
mean minimizing the uncertainty in the sought-after quantity.

" Although the concepts described in this paper are applicable to all systems,
we treat only the estimation of thermal properties by measurements of temperature
or heat flux.

Contributed by the Heat Transfer Division for publication in the JOURNAL OF
HEAT TRANSFER. Manuscript received by the Heat Transfer Division September
3, 1996; revision received May 12, 1997; Keywords: Measurement Techniques;
Modeling & Scaling; Transient & Unsteady Heat Transfer. Associate Technical
Editor: T. L. Bergman.
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This is most easily done by appealing to the work of Fisher
(Helstrom, 1995; Linnik, 1961; Strang, 1986), who pointed out
that the information content of a signal used to estimate proper-
ties or parameters, u, could be expressed in terms of the Fisher
Information matrix, M

M = E[(d 1nf(\11|u)><a lnf(\I!|u)>T]
ou ou

where f(¥|u) is the conditional probability distribution func-
tion, ¥ is the difference between the measured and predicted
responses, and u is the vector of sought-after parameters. The
theorem of Cramer-Rao states that the estimation error has a
lower bound of M™'. The predicted response is a function of
both the sought-after parameters and others which are assumed
to be known. In its usual form, M, does not admit the consider-
ation of uncertainties in these ‘‘’known’’ parameters. For exam-
ple, the fluid temperature and the mass of the infinite conductiv-
ity sample are usually assumed to be known exactly.

Fadale et al. (1995b) have presented a theory which accounts
for such uncertainties. In this extended theory, the components
of M are given by

K ; -

d(I)k _ a(ﬁk

M,, = v =
[ IE [ < 8um> ¢ < au, >

1 oV, aV,
o |V == 3
2 ! [ ¢ oy « c")um:H )

(2)

where ® is the predicted response and the extended covariance
matrix V, is defined as

Vi=E[{® — E(2)} (D — E(®)}]

=8 + 0,GO;] 4)
where S, is the usual covariance matrix of the measurement
noise, @ is the matrix of sensitivity of the predicted temperature
® to the ‘‘known’’ parameters, b, which are presumed to have
some uncertainty, and G is the covariance matrix of the uncer-
tainties in b,
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The optimal protocol consists of choosing the sensor loca-
tions, x;, v;, z;, the sampling times, #, and the duration of the
experiment to minimize the uncertainty as characterized by
M ™', This clearly depends upon the interaction between the
measurement noise, S;, and the sensitivity of the system to
these ‘‘known’’ parameters, @ = 8®/0b. When the ‘‘known’’
parameters have some uncertainty, this effect can be accounted
for (at least to the first order) by including their covariance G,
as indicated in Eq. 4.

The different experiments that we have examined thus far
(Emery and Fadale, 1996; Fadale, et al., 1995a, 1995b) have
had only one ‘‘known’’ parameter with uncertainty, either the
prescribed boundary temperature, heat flux, or convective heat
transfer coefficient. In addition, we have assumed that it is
possible to locate the sensor precisely (or equivalently, that the
sensor measures the temperature at an exact location). In this
paper, we wish to examine the effect of measuring the tempera-
ture using a sensor which is either positioned with some uncer-
tainty or measures the temperature over a small but finite range
of x. We also wish to examine what happens when two different,
but interacting, boundary parameters are assumed to possess
uncertainty.

New Results

Before discussing these new results, it is instructive to look
at Eq. 3 for a simple case. Consider when there is only one
sensor and one parameter to be estimated. In all of the thermal
problems studied to date, when only one parameter is to be
estimated the trace term has contributed negligibly to M (why
this is so is currently not clear, but is related to the complex
behavior of V). Neglecting the trace term and assuming that
there is only one uncertain ‘‘known’ parameter b, we may

write
(22
u

8%, \*
S+ | —
% <3b>G

K
(c*(w)u’) ' =M =3 (5)
k=1

The variance of u is inversely proportional to the sensitivity of
the measurement to u, d®/0u, and proportional to the sensitiv-
ity to b, 0®/0b. Thus, the variance of u will be minimized if
the sensor is placed at the point of maximum sensitivity to the
sought-after parameter » and the point of minimum sensitivity
to the “‘known’’ parameter b. Unfortunately, these two points
are rarely the same, and the optimal location is a competition
between these two effects. Since both sensitivities vary with
time and boundary conditions, the optimal sensor location for
any given experiment changes with time and differs substan-
tially for different experiments and with the relative importance
of S; and G.

Nomenclature
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Fig. 1 Sensitivity of temperature to k, b, and T, for a slab with convective
boundary conditions on both faces (Bi, = 0.2, T, = 1000, Bi, = 0.8, T, =
1000)

Consider a slab of thickness L, initial temperature of 0, con-
vective heat transfer coefficients and fluid temperatures at x =
0, and L of hy = 5, by = 20, T = 1000, T, = 1000, pc = 10°,
and conductivity k& of 1 (all in SI units), and let us examine
the behavior at times long enough so that the temperature distri-
bution is affected by heat conducted inward from both surfaces.
We seek to determine the optimal position of a single sensor
to estimate the conductivity, &, under conditions of uncertainty
in the sensor location and the boundary conditions.

Figure [ depicts the sensitivity of temperature to £ and to the
convective coefficient and the fluid temperature at x = L. The
associated M for 1 percent noise and no uncertainty in 4, and
T, is shown in Fig. 2. Its peculiar shape is due to the time
variation of 0T/0k, Fig. 1. At any given time, a small increase
in k increases the heat flux, lowering the surface temperature
and the temperatures near the surface, thus 87/9k < 0. Farther
from the surface, the increase in & leads to an increase in pene-
tration depth and flux and an increase in temperature; thus, 87/
Ok > 0. Near x = 0, the temperature history at early times is
similar to that at x = L. At later times, the much lower convec-
tion coefficient leads to a temperature distribution which is
strongly affected by the heat conducted from the surface at x
= [, leading to 3T/0k > 0, but less than that near x/L ~ 0.3.
Because M is formed from measurements taken over time, it is
difficult to predict its behavior. For this experiment, the value
of 8T/8k at x = L is initially very high but decreases with time,
while it increases with time near x = 0 and particularly at the
intermediate point, x/L ~ 0.3 where the temperature is affected
by heat flowing in from both surfaces. The value of M at x =
L is initially greater than at the other points. As time increases
the value of M at x = L decreases rapidly and that at x/L ~
0.3 increases sufficiently to become the best region for locating

b = vector of known parameters,

¢ = specific heat capacity
Cov[ ] = covariance operator
E[ ] = expected value operator
f = probability Distribution Func-
tion
Fo = Fourier number (=kt/pcL?)
G = known parameter covariance
matrix
h = convective heat transfer coef-
ficient

gx, Q = heat flux

t = time
tr = trace

mated, u

662 / Vol. 119, NOVEMBER 1997

k = thermal conductivity
b K = number of measurements
M = Fisher information matrix

S, = error covariance matrix

Ty, T, = fluid temperatures
T, = initial temperatures
T,. = measured temperature
u = vector of parameters to be esti-

V = volume

X = position
X, = sensor position
p = density

o = standard deviation

® = predicted temperature

¥ = error, ® - T,

O = matrix of sensitivities, 0®/b
Superscripts and Subscripts

k = time

T = transpose
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Fig. 2 Values of M as a function of sensor location and time for a slab
with convective boundary conditions on both faces {Bi; = 0.2, T, = 1000,
Bi, = 0.8, T, = 1000) and 1 percent noise in the measured temperature

the sensor. It is best in two senses: (a) measurements taken in
this region provide the most information; and (b) the informa-
tion is relatively constant over a wide spatial zone reducing the
need to precisely locate the sensor. At very long times the
temperature becomes constant, the sensitivity reduces, and the
information approaches zero.

Effect of Imprecisions in &, and 7;. The spatial distribu-
tion of the sensitivity of the temperature to both 4, and T, is
similar, Fig. 1. Both sensitivities are greatest at x = L, with the
sensitivity to T, being the larger. These spatial distributions
are reasonably constant with respect to time. The effect of the
imprecisions in A, and T}, is to reduce M at all values of x, but
more so at x = L, Fig. 3. It is interesting that uncertainties in
he, T;, or both do not lead to a different location of the maxi-
mum value of M.

As the temperature at x = L approaches its steady-state value,
the sensitivity to k& quickly diminishes. Simultaneously, the
value of M increases in the interior. The result is that the optimal
sensor location moves inward with time. Figure 4 shows the
history of o(k)/k. When only one sensor is used and it is fixed
at x = L, o(k)/k increases significantly with time (Fig. 4, curve
a). If the sensor is always located at the optimal position, i.e.,
the point of maximum M, it is initially at x = L, but then later,
at Fo =~ 0.4, it begins to move towards x = 0. Positioning the
sensor at the optimal location mitigates the strong increase in
a(k)/k at later times (Fig. 4, curve b) but unfortunately it still
remains large. From a practical point of view the sensor cannot

500 l I
Variations X /
400 —e—h 0. T =0
——h =8, T =0
J —-A—hL=D. TL=5
300 —+—h =5, T =5
=
///6\
200 ]
100 BN
' \\W
o]
s} .20 .40 .60 .80 1.00

x/L
Fig. 3 Values of M at Fo = 0.625 for a slab with convective boundary

conditions on both faces (Bi, = 0.2, T, = 1000, Bi, = 0.8, T, = 1000) with
uncertainty in h, and T,, 1 percent noise in the measured temperature

Journal of Heat Transfer

10
> °
|
.08 S a—
&
~ d
Y .06
~
F ol . .
a \El
~ .04 =< = fim
i3] = g
—a-—-0Optimal, 2 sensors
02— —%—Sensors at 0 and L
—a—Opt 1mal, | sensor
—+—Sensor _at L
0
0 .20 .40 .60 .80 1.00

Duration of Experiment (Fo)

Fig. 4 Standard deviation of conductivity for one and two sensors
placed at the optimal and fixed sensor locations for a slab with convec-
tive boundary conditions on both faces (Bi, = 0.2, T, = 1000, Bi, = 0.8,
T. = 1000) with 1 percent noise in the measured temperature and o (h.)/
h. = 10 percent

move with time and the only way to conduct such an experiment
is to install multiple sensors and use the reading of the appro-
priate sensor at each measurement time.

If two sensors are used and placed at the optimal positions,
one of which turns out to be always at x = L, (Fig. 4, curve
¢) a(k)/k decreases continuously with time. Of course, it may
be impractical to move the sensor or to make use of a large
number of distributed sensors. Instead, we could place one at
x = L and the other at x = 0. Initially, the sensor at x = 0
contributes little to increasing the information (Fig. 4, curve
d). As time goes on and the optimal location of the second
sensor begins to approach 0, this second sensor adds consider-
able information and the curve for o(k)/k parallels that for
curve c in Fig. 4, although always at a slightly higher uncer-
tainty.

Effect of Imprecisions in X,. The effect of imprecision in
the sensor location, Xj, is illustrated in Fig. 5. For both a known
and an uncertain A, the imprecision in X, produces a very large
reduction in M at all values of x except near a point in the
interior. This effect can be understood by examining the nature
of V. For an uncertainty in X;, the relevant term, 07/9b = 0T/
0X, = —q./k. Thus, V is equal to S where the heat flux is zero,
and increases with increasing heat flux. Near the heated surface,
since ¢, is large, V is also large and the value of M is reduced,
and thus the variance of k is substantially increased when com-

—B—XS=D, hL=0

—9—X3=5.hL=O
+XS=O'hL:IO/
300 3 \ +X8=5.h_=10/
=
EOO/ & \

[ e
IOCQ/A/g Q\\ /J "

(o] .20 .40 .60 .80 1.00

0
x/L

500 I T
Variations X% /

400

LET

Fig. 5 Values of M at Fo = 0.625 for a slab with convective boundary
conditions on both faces (Bi, = 0.2, T, = 1000, Bi, = 0.8, T, = 1000) with
uncertainty in A, and X ; and 1 percent noise in the measured temperature
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Fig. 6a Effect of changing the conductivity on the values of M at Fo =
0.625 for a slab with convective boundary conditions on both faces (Bi,
= 0.2, T, = 1000, Bi, = 0.8, T, = 1000) at a fixed value of Fo with 1 percent
noise in the measured temperature
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Fig. 6b Effect of changing the conductivity on the values of M for a slab
with convective boundary conditions on both faces (Bi, = 0.2, T, = 1000,
Bi, = 0.8, T, = 1000) at a fixed value of t (kt/pc 22 = 0.625) and 1 percent
noise in the measured temperature

pared to the case where there is no uncertainty in X,. However,
at the point at which the heat fluxes oppose and cancel each
other, V = S, M is unaffected. The ideal sensor location is near
this point and remains nearly constant with respect to time.
When both X, and A, are uncertain, the uncertainty in 4, domi-
nates, but there is still value in placing the sensor near the point
of zero heat flux.

Effect of Conductivity k. The thermal conductivity defines
the ratio of internal to surface resistance (Bi) and conduction
to storage (Fo). Thus, changes in % lead to complex changes
in the amount of information available from the experiment. The
results presented thus far are for a relatively high conductivity
leading to Biot numbers near 1 at both surfaces. It is of interest
to explore how such a test will perform when used to measure
the conductivity of insulators. Since the surface heat convective
coefficients are controlled primarily by the test fixture, it is not
likely that h, and h; will change. For an insulator, then the
changes in the Bi and Fo numbers will be due only to changes
in k.

As the conductivity decreases, at the surface the temperature
is essentially equal to the fluid temperature and constant with
time. As a consequence, the values of M at x = 0 and L approach
0. The temperature in the interior becomes very sensitive to k
and the interior values of M, Fig. 6(a). Because T, and T, are
equal, the point of maximum sensitivity moves towards the
center. Since the experimental accuracy is defined by o(k)/k
= 1M , reducing the conductivity by a factor of 10 yields an

664 / Vol. 119, NOVEMBER 1997

increase in the accuracy of about 3, Fig. 6(a). From another
point of view, if a desired level of accuracy has been defined,
reducing the conductivity increases the range of x/L in which
the sensor can be placed.

The conclusions drawn from Fig. 6(a) can be misleading
from the experimenter’s point of view since the curves are at
a constant value of Fo. That is, when the conductivity is reduced
by a factor of 10, the duration of the experiment increases by
a factor of 10. Figure 6(5) illustrates the effect of conductivity
at a fixed time measured in seconds. While the accuracy does
increase for sensors placed in the interior of the slab, the optimal
location of the sensor varies strongly with k. The greatest in-
crease in accuracy occurs at the surfaces, and sensors placed
there are to be preferred.

Effect of Different Boundary Conditions. The results de-
scribed to this point have been strongly affected by the existence
of opposing heat flows due to convection into the slab from
both surfaces. It is of interest to examine the case of unidirec-
tional heat flow which occurs when the fluid temperature at x
= 0 is zero. Figure 7 illustrates the different aspects of this
boundary condition. All of the results can be anticipated based
upon the previous discussion. First, the temperature develops
slowly at x = 0; thus, at early times M is greatest at x = L,
passes through a near zero at x/L ~ (.7, and remains quite low
all the way to x = 0. Later, when the temperature at x = 0
begins to increase, the temperature at x = L has stabilized and
the highest values of M are found at x = 0, Fig. 7(a). Likewise,
since the heat flux is always greatest near the heated surface at
x = L, an uncertainty in X causes the greatest reduction in M
for sensors located near x = L, Fig. 7(b). Finally, the effect
of increasing the Biot number is to move the optimal sensor to
x = 0 with a substantially increased value of M, Fig. 7(c). In
contrast to the results shown on Fig. 6 where there was a strong
effect of changing & regardless of the value of k, the incremental
effect of reducing & shown in Fig. 7 diminishes as & decreases.
For this case of unidirectional heat flow, the optimal sensor
location once the temperature begins to rise at x = 0, Fo =~ 0.1,
is always at x = 0 regardless of the uncertainty in any of the
“‘known’’ parameters.

It is of interest to examine the value of M for several different
practical boundary conditions. Table 1 lists the values of M at
the optimal sensor location.” The maximum values of M vary
somewhat erratically as the sensor moves in time. It is clear
that the best experiments for estimating the thermal conductivity
are those in which one surface is maintained at a fixed tempera-
ture and the other surface temperature is controlled by some
form of heat flux, either prescribed or convective. The last two
cases, columns 5 and 6, show the strong effect of the convective
coefficient. The optimal sensor location for estimating k is
where the temperature is most sensitive to k. Initially, this is
at the surface with the highest value of surface heat transfer
coefficient, x = L. Later, when the temperature at x = L ap-
proaches T, and is insensitive to both A, and k, the optimal
location moves to the surface whose temperature is still chang-
ing, i.e., the surface with the lowest heat transfer coefficient, x
= 0. Here the temperature is primarily controlled by A, and not
k, and the information content is substantially reduced because
of this low value of Ay, column 5. On the other hand, when A,
is so large that the temperature at x = 0 is fixed, column 6, the
temperature distribution is controlled by k, the optimal sensor
location is always at x = L, and the information content is
adequate (o(k)/k ~ 1.3 percent). In all cases when the steady-
state temperature distribution is a function of %, the best perfor-
mance is at relatively long times.

2 All results are presented in non-dimensional form with 7 normalized by T,
— 7‘0
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Fig. 7b Effect of uncertainty in sensor location on the values of M at
Fo = 0.625 for a slab with convective boundary conditions on both faces
(Bi, = 0.2, T, = 0, Bi, = 0.8, T, = 1000) at a fixed value of Fo and 1 percent
noise in the measured temperature
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Fig. 7c Effect of changing the conductivity on the values of M at Fo =
0.625 for a slab with convective boundary conditions on both faces (Bi,
= 0.2, To = 0, Bi, = 0.8, T, = 1000} at a fixed value of Fo and 1 percent
noise in the measured temperature

Conclusions

In transient experiments, the optimal temperatures sensor lo-
cation is always in the region which experiences the greatest

Journal of Heat Transfer
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Table 1 Maximum value of M for determining k, noise = 1 percent, no
uncertainty in known parameters

Fo Boundary Conditions

x=0 T =0 T =0 T =Ty, Zo=0 T =0

Bi =0.8 Bi=0.2
x=L ¢:=Q T=Tg T =Ty Too =Ty, Too =T,
Bi =0.8 Bi =0.8 Bi =0.8
0.01 112 169 90 89 89
0.05 519 178 314 316 316
0.10 1028 1mn 455 516 516
0.50 6172 172 374 998 1491
0.75 10989 171 395 873 2113
1.00 16129 171 381 903 2674
o 10° 0 0 905 6097
Optimal X, L Varies Varies Varies L

change in temperature. For convective boundary conditions, at
early times this will be the surface with the largest convective
heat transfer coefficient. Later, this region’s temperature stabi-
lizes and the optimal point moves. The new optimal point is
either at another convective boundary or in the interior at a
point where there is zero heat flux, depending upon the value
of the Biot number. In cases with high Biot numbers, the optimal
point is generally in the interior. In low Biot number cases,
the optimal point is almost always at a convective boundary.
Uncertainties in boundary conditions drive the optimal point to
the interior. Uncertainties in sensor location, either in the form
of an uncertain position or because the measured temperature
represents an average over a finite region of space, force the
optimal sensor location to points of minimum temperature gra-
dient.

It might be thought that there cannot be uncertainty in sensor
location at x = 0 or L since this simply calls for a surface
temperature measurement. However, realistically, because of
the sensor thickness, such surface sensors measure a tempera-
ture which is intermediate to the true surface temperature and
the fluid temperature. This is particularly true of probes placed
in the boundary layer. Thus, there is a natural uncertainty in
sensor position. Because the temperature gradient is a maximum
at the convective surface, the effect of this uncertainty is very
degrading to the estimation of the conductivity by an inverse
method and internal temperature sensors or heat flux sensors
should be employed.

By using the simplification of the general form of M given
in Eq. 5, the experimenter can successfully understand the time
history of the optimal sensor location. While the sensitivities,
0®/0u and 0®/Ob, may be complex functions of time and
space, even an approximate estimate of their behavior will often
suffice. However, when several parameters are sought, the trace
term of Eq. 3 is no longer negligible and ignoring it can lead
to substantial errors in estimating M and the optimal sensor
location.
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Cartesian coordinates. To retain unconditional stability and greater accuracy of
computation when solving diffusion equations in non-Cartesian coordinates, a new
explicit algorithm is developed by combining the advantages of those originally
proposed by Saul’ev, Larkin, Barakat and Clark. Analysis of accuracy shows that
the new algorithm can be as accurate as either that of Larkin or that of Barakat and
Clark. Stability analysis is also carried out ‘locally’ based on the spectral stability,

and this shows unconditional stability of the generalised algorithm. Numerical exam-
ples on transient heat conduction are used to support the conclusions from the

analysis.

1 Introduction

The ADE (Alternating Direction Explicit) methods for the
solution of diffusion equations based on rectangular or cubic
regions in Cartesian coordinates were developed several de-
cades ago (Barakat and Clark, 1966; Larkin, 1964; Saul’ev,
1957, 1958). Practical applications have shown that these algo-
rithms possess great advantages over other numerical methods
in regard to both the CPU time and memory if the problem to
be solved is of the appropriate type (see Anderson et al., 1984).

The ADE type of algorithms were developed in such a way
that the implicit computing scheme (Crank-Nicholson) was
split into fractional explicit computations along positive and
negative directions of coordinates. The purpose of this is to
make the computation which was originally implicit become
explicit and thus cancel the truncation errors during explicit
computation in alternating directions. The first such algorithm
was developed by Saul’ev (1957, 1958). In his method, compu-
tation along opposite directions was carried out at different time
levels. This led to first order accuracy. To improve the accuracy,
Larkin (1964 ) proposed another algorithm to do computation
along opposite directions at the same time level. Subsequently,
a slightly different approach was suggested by Barakat and
Clark (1966). All of these algorithms were developed only
for solving diffusion equations with standard expressions in
rectangular or cubic areas. Unconditional stability exists for
solving diffusion equations in these regular areas and since no
simultaneous equations need to be generated and solved, a great
amount of CPU time and storage can be saved with these ex-
plicit algorithms. It has been reported that for two-dimensional
problems, the ADE method is at least ten times faster than the
corresponding ADI method for large problems.

However, equations with standard forms in rectangular or
cubic regions in Cartesian coordinates occur only in a relatively
small number of practical problems. In order to make the ADE
method capable of being used for a wider range of engineering
problems, it is necessary to develop these algorithms further so
that diffusion equations can be solved on irregular grids. In an
attempt to achieve this, the authors realize that in developing
numerical methods for solving diffusion problems the nature of
the equations along with the boundaries change with the varia-
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tion of the coordinate systems. In other words, the region has
different shapes in different coordinate systems. This computing
strategy has been widely used previously in techniques such
as the Numerical Grid Generation method. As a first step in
developing ADE types of algorithms for solving diffusion equa-
tions in arbitrary regions, diffusion equations in non-Cartesian
coordinates, such as cylindrical and spherical ( which are special
cases of the general expressions of diffusion equations), are
considered. This is also equivalent to solving complex expres-
sions involving both lower order and mixed derivatives of diffu-
sion equations in regular areas.

Firstly, ADE algorithms are developed for use with diffusion
equations in two-dimensional cylindrical coordinates by consid-
ering the treatment of the first order derivatives. Their stability
and accuracy are also studied. To retain unconditional stability
of computation and maintain second order accuracy a new ap-
proach is developed. It is shown that all of the algorithms pre-
viously developed are actually special cases of this new method.
This new algorithm is further developed for solving three-di-
mensional diffusion equations in cylindri¢al and spherical coor-
dinate systems. It should be noted that the problems studied in
this paper are differential equations with variable coefficients.
A spectral stability analysis method in the sense of ‘‘local analy-
sis”’ is employed. In carrying out this analysis, all of the prob-
lems are assumed to be properly posed. Finally, numerical ex-
periments are carried out to show the stability of the proposed
method. Since the new method is a generalization of the previ-
ous developed algorithms, exactly the same accuracy can be
achieved when a corresponding approach is adopted. To make
the expressions simpler and easier to understand, only constant
mesh sizes are used in the analysis. Corresponding formulae
for variable mesh sizes can be easily obtained from those pro-
vided in this paper. In addition to this, due to the unconditional
stability of the new method, it is readily apparent that variable
mesh sizes can be used in the solution of practical problems.

2 ADE Methods for the Solution of MultiDimen-
sional Diffusion Equations in Non-Cartesian Coordi-
nates

A two-dimensional linear diffusion equation in cylindrical/
polar coordinates can be expressed as

0%
z°

ot

+a

(1

Ou adu 8%u
=-—+a-—
r Or r?
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or

@ 8%
r? Op?

Ou adu+ 32u+ (1a)
ot ror r? “
where a > 0. From the point of view of constructing numerical
algorithms, there is no significant difference between (1) and
(1a). Hence, only Eq. (1) is employed to evaluate the new
algorithms.

In the algorithms developed below, the subscript j denotes
the node number in the radial direction and k denotes the node
number in the z direction. The superscript n denotes the nth
time-step so that (j, k, n) can be used to denote a position in
both space and time domains while computing. Central differ-
ence is employed for both first and second order derivatives for
spatial variables.

As in the case for Cartesian coordinates, the ADE algorithms
are based on the splitting of the Crank-Nicholson (C-N)
method. For the two-dimensional equation given in (1), the
following is the application of the C-N method

whit' — ul, a
Jk Jjk _ +1
At  4rAr Sluje” + uil
j

SHul + ul] + ——— SHu' + ul]

(2)

Z(A )? 2(A )?

where § and 67 are the central difference operators.

2.1 Handling of the First Order Derivative. It is appar-
ent that the difference between the algorithms to be developed
here and those studied by previous researchers is the handling
of the first order derivative. To illustrate this problem, the fol-
lowing one-dimensional diffusion equation in polar coordinates
is employed:

o
ort’

Bu a Ou

3
o r8r+a (3)

The following method, which is an analogue of that proposed
by Barakat and Clark (1966), can be constructed to solve Eq.

(3):

pi™ = pj + Glpja = pj + pi™t — pi
+AIpj = pf =P+ pIT (4
and
a7 =g} + Glgit —ait + q) — g)]
+Algit! — ¢~ qf + 4] (5)

where A = (aA)/(Ar)*, C; = (aAt)/(2r;Ar). The solution

is given by

n+l + n+1

Mjn+l — p J 2 q . (6)

Obviously, stability of the above method depends on the
stability of both (4) and (§). Stability analysis is carried out
by means of the spectral stability analysis method based on
“‘local”’ stability. This method works in the following way: in
an inner product space spanned by the standard Fourier bases,
a periodical function can be expressed by the linear combination
of the bases (Richtmyer and Morton, 1967). Denoting « and f
as the angle variable and Fourier coefficient in the spectral
stability analysis, analysis for (4) gives

(1 +A-C)—(A—-Cle™™f "

=[(1-A-C)+ A+ Celf] (7
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or

. [1 - (A+ C)(1 —cosa)+ i(A+ C)sin «]
71+ (A~ CH(1 —cos @) + i(A — C)) sin a]

ntl

:;_iT' (8)

J

We can obtain

il 9

It can be seen that the condition for the stability of computa-
tion with (4) is |C;| = 4 in the sense of ‘‘local stability’’. This
example shows that unconditional stability is not always re-
tained due to the appearance of the first order derivative (lower
order term). Therefore, contrary to the normally accepted situa-
tion (Richtmyer and Morton, 1967), it can be seen that no
general conclusion can be drawn about the influence of lower
order terms on stability.

Alternatively, the method for solving Eq. (3) can be

- IF'rP=1-2C.

Py =Pl Gl + o — I = pi

+ Alpiw — pi = p*' + pi1 (10)
and
q"' = q + Glgit + 4 — q) - qj-]

+A[‘Iﬁxl gt =g} +gia1 (11)

where the only variation is the handling of the first order deriva-
tive and the final solution is also that given by (6). Stability
analysis gives

[(1+C+4) — (4~ Ge ™l f !

=[(1+G-A)+ A+ Celf] (12)
and
[(1 —C +A)—(A+ C)e™lgi™!
=[(1-GCG-A)+ A —-Cle™ g (13)

By analyzing the stability of (12) and (13) it can be con-
cluded that the computation is unconditionally stable for recur-
rence in the time domain. However, if the recurrence in the
radial direction is studied, another stability problem occurs.
From (13), the following stability expression can be obtained:

(1 -G +AN=(4+ (). (14)

To make the computatlon stable, \; must satlsfy IN] =
which leads once again to the condmon C; = 5. Therefore, in
the following analysis the first order dcrivatives are to be treated
in the same way as that in (4) and (5).

The stable region of the algorithm in (4) and (S) is quite
small. To seek algorithms with greater stable regions, the fol-
lowing algorithm may be constructed

pjn+1 — u}/} + Cj[uj"’+] — uj + pjn+l p;lil

+ Alufer — ul — pith + prl (15)
and
q}wl _ u}: + C}[qu}:!l . q}H-l + u;x _ u;l—l]

+ Algh! — gt —ul +ul. (16)

The final solution is also that given in (6). This algorithm is
an analog of that proposed by Larkin (1964). The accuracy of

NOVEMBER 1997, Vol. 119 / 667

Downloaded 11 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



this algorithm can be considered to be roughly second order
since (15) and (16) are equivalent to
pjr_z»l—] + q,;HLl

. C
2 -_—uj+

Ej [(uf = uj) + (gfH — pitD]

A
3 [6%u) + (g3 — "' — pi™' + pi2D]. (17)

If the angle variables in spectral stability analysis for (15) and
(16) are considered to be identical which is denoted by «, the
following non-negative condition for. stability of computation
can be obtained:

[1+ A(l —cos @) + A%sin” a — CH1 = cos a)’]
X [A + A*(1 — cos @) — C3(1 + cos )]

— C2(1 + cos a)[4A%(1 — cos @)> — 1] = 0. (18)
Denoting C; = ;A and ¢ = Max { g}, the stability condition
in the sense of local analysis is

(19)

It can be seen that since the extreme of y is 3, Eq. (19) gives
Apx = 1 + 2. However, numerical tests have shown uncondi-
tional stability. Hence, due to the difficulty in analyzing the
stable region of this method, it will not be studied further in
this paper. Detailed discussion on general splitting of algorithms
and associated stability analysis problems will appear in a sepa-
rate paper (Wang & Crawford, in press).

2.2 ADE Algorithms for Solving Two-Dimensional
Problems. On the basis of the above analysis for a one-dimen-
sional problem, the construction of ADE algorithms for solving
the two-dimensional equation in (1) is quite straightforward.

The first method for constant mesh sizes consists of

ufi ' = e+ Clufoie — whe + ulid' — witly]
+ Alufog — e — ult + it
+ Aglufury — wh — uwit +uh]l (20)
and
wit? = ult + Glufly — wit® + uift — ultly
+ AU — ui — ol it
+ Aglufd — ui? = i+ ulihl (21)
where A;, A, and C; are
_alr _alt _aAt 2
e T 9T A B

This algorithm is a variation of that proposed by Saul’ev. It
works in the following way: in the first step and the following
odd steps, computation is carried out from the lower bottom
corner to the right upper corner along the positive directions of
R and z; in the second and the following even steps, computation
is carried out along the inverse directions.

The second method for constant mesh sizes consists of

nti

pit = ph 4+ Clpias — ph+ Pt = p;lel‘k]
+ Aptoge = pho - P+ pitld
+ Aol piist — Pl = 3T+ pIEAD (23)
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and

A+l at+l

g =gl + Claitle — g + g — gi-14]
+Algile — aid — g + qj-14]

+ Al gl — gl = gl + qle] (24)

where A, A,, and C; are the same as those defined in Eq. (22)

and the solution is given by

n+1 = p.;l;] + qj”/;*'l
-

Ujk (25)

This algorithm is a variation of that suggested by Barakat and
Clark. Computation with this algorithm is exactly the same as
the first one, i.e., sweeping from different directions except that
computation is in the same time level.

The accuracy of the second algorithm can be considered to
be approximately second order (see Barakat & Clark, 1966). To
analyse the accuracy of the first algorithm, the one-dimensional
diffusion equation in (3) can be employed. The truncation error
in Egs. (20) and (21) at ¢t = (n + 1)Az is apparent from the
following expressions:

=~ %’ o — 21 [~ Af, ]
- a(— % U, — Z;t Uy + % u,,,) (26)
and
Ry = —Az—’ Uy — 5“— [At, ]
- a[% o+ L + (—2%2 u} @7

It can be seen that the principal error of the method is [aAt?/
Ar]u,,. Hence, this method is considered to be accurate to the
first order.

From the stability analysis carried out previously, the second
method is only conditionally stable and numerical tests have
confirmed this. To analyze the stability of the first algorithm,
Egs. (20) and (21) can be rewritten as

(1 = G+ A+ ADuld + (G — ADul™y — Al

=(1=Cj— A, — A)ulk+ (C+ AUl rp + Agulne,  (28)
and
(14 G+ A+ Auli® = (G + ADulil — Awlied
=(1+C— A, — A)uli
+ (A — Coultly + Al (29)

Based on the spectral stability analysis method (see section
2.1) and denoting the angle variables corresponding to R and
z directions, respectively, by «, 8 and the Fourier coefficient
by F, the following expressions for ‘‘local’’ stability can be
obtained:

[(1~C + A+ A) + (C— A)e ™ — Aye P!

=[(1 =G —A —A)+ (A + Ce™ + Ae1F!  (30)
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and
[(1 +C+ A +A4A) — (C+ Ae™ — A Fi+2
=[(1+C —A —As) + (4 — Cle™
+ A IFP(31)

where «, 3, and F are angle variables and the Fourier coefficient.
Cancelling F ;’“ from Eqs. (30) and (31), the local amplifi-
cation factor H; can be obtained,

1= (A + C) — Ay + (A + Ce™ + Ae’I[1 — (A, —

proposed by Larkin can be obtained if the solution for output
is also used as the initial value for next step computation. There-
fore, it is evident that the above computing strategy is accurate
to the second order and retains unconditional stability.

2.3 Explicit Algorithms for Three-Dimensional Prob-
lems. The new ADE algorithm for solving the diffusion equa-
tion in both cylindrical and spherical coordinate systems is stud-
ied in this section. The diffusion equation in a cylindrical coordi-
nate system is

C) — Ay + (A — Che ™ + Are™)

a [1+ A+ C)+ A — (A + Ce™ — Ae”1[1 + (A —

When the modulus of H; satisfies [H;| = 1 for arbitrary & and
S, computation with the method in (20) and (21) for solving Eq.
(1) is stable. If the fact that A; > C; = 0 is noted (since r; =
Ar), unconditional stability is readily apparent (see also Eq.
(50)).

Although this algorithm is unconditionally stable, which fa-
cilitates computation and programming, its accuracy, being lim-
ited to the first order, is a drawback. However, an interesting
thought is the possibility of combining the advantages of the
first and second algorithms to develop a new approach. To
achieve this, two computation schemes starting at different ends
and proceeding in different directions based on (20) and (21)
can be constructed. The following is the recommended comput-
ing strategy if the initial values of p and g are specified as

Pl = @)k = Ui (33)
Forn =0, 2, 4, ..., the computation scheme, at time ¢t = (n
+ 1)At, is
pit = ph + Clpfoe — ph + i — pj""-:ll,k]
+ Alpark = Pl — P+ piid
+ A piget — Pik — P}'k)r] + P}'Ijl] (34)
and
ai = qi+ Glajile — qi' + qi — @14l
+ALgiil — @i — @i + gi-1a]
+ Aol gt — @i g+ qla ] (35)

where A,, A,, and C; are the same as those defined in Eq. (22).
The solution for the output is u”*' = (p"*' + ¢"*')/2. At time
t = (n + 2)At, the computation scheme is

piE=pRt + Glpit — pi7 + pi ~ pitld
+ Ailpiite — pit - pi it
+ Ao pith — pit - pR + pEA1 (36)
and
gt =gt + Gl — g + g — g2l
+ Al — g’ — g+ gt
+ Al — g — i + aitAY. (37)

The solution for output is "% = (p"*? + ¢"**)/2. A variation
of the above computing scheme can be obtained by specifying
the u"*? as the initial value for the next step computation.

It can be seen that all of the ADE algorithms developed
previously are only special cases of the above computing strat-
egy. For example, Eqgs. (34) and (36) or (35) and (37) consti-
tute the algorithm originally proposed by Saul’ev; Egs. (34)
and (35) are proposed by Barakat and Clark if the output is the
average value of p and g as given above; the algorithm originally
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. —= . (32
G) + A — (A — Ce™ — Ae™] (32)
2 2 62
Ou_adu, Ou, Ou,adu
ot ror or 0z r* O
The diffusion equation in spherical coordinates is
Ou_2a0u, O, a Ou, ablu
o r Or orr  rlugf 08 r* 06*
82
a u (39)

r?sin®d O¢p?

On the basis of the study of two-dimensional problems, algo-
rithms for solving three-dimensional problems can be readily
constructed by extending those previously studied. For example,
the extension of the algorithm in Egs. (34)~(37) for solving
three-dimensional diffusion equations in cylindrical coordinates

for a constant mesh size consists of the following:
1 Atr=(n+ 1)As,

phat = piu + Clpioiw — Plu + i P prtial
+ Allplow = Pha — Pl + piia)
+ Aol Plirrs = P = Pl + piiul
+ Aylploss — Pl — PR+ Pl (40)
and
CI}'/JI = g + Cj[q;‘lzll.kl - q,’-’Z?‘ + g — qi-wl
-+ Al[q,'iz:ll,kl - qwl — G + gi-1u)
+ Al gl — @' — G+ @i
+ Aaj[q}z;,rzil - q,’&J‘ = gt gio] (41)
where
_alt _alt _alr
TTanar TN (AT T (A
Ay = 28 (42)
ri(Ad)
2 Atr=(n+ 2)At,
Pt = pit + Glpjthe — pia® + pia' — pitiul
+ Al[P}le,kt - P%Z - P}lﬁl + pj"lrll.kl]
+ Al piit — it — Pt + il
+ Aylpii — pid — piit + piall (43)
and
q}’ﬁl = q}’;??‘ + Cj[‘]ﬁl‘,kl - q}’:?z' + 6]71:52 - q;’rﬁ,kl]
+ Algitle — afd' — qia® + qittul
+ Al gty — gl — ai® + afidu)
+ Aylqiiin — g’ — g’ + gl (44)
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To solve three-dimensional diffusion equations in spherical
coordinates, the recommended algorithm for constant mesh size
consists of the following:

1 Att=(n+ 1)As,
pia' = ph+ Cylplein — Piu + Pt = prtil
+ Alpieu
+ Czjk[l’;"fkﬂ.l - P}‘kl + P}ll:?l - pj"flt—ll.l]

—phu — Pl + pital
+ Ayl pixeiy — Pju — pit + pihd

+ Ayl plrer — Piu — P}’ZI +pitl (45)
and

q7-14l

+ Aillgiily — it — qiu + g1l

n+l _ _n n+1 n+1 n
Qi = qju + Cylgiiiu — qjv + Gu

+ Coul gt — @it + gl — @il
+ Azj[q;'flalu - q}‘/le = Giu + Gia-1.]
(46)

+1 +1
+ Ayl g — G — Qi+ Qiri-1]

where

_ altr Coo = alt
AR T T 22016,

- alt
rH(A¢)? sin? 6,

alAt

=—
rAr

alt
¥ rjz(A@)2

2 Atr=(n+ 2)At,

Clj

(47)

Asjt

n+1

n+2 __ n+2 n+2
Gk~ = Qju ]

ntl n+1
+ Cylgiiiw — qia + G " — qi% 0k
n+1 at+l n+2 n+?2
+ AlqiT i — Qin — Qu + 4w
n+1 ntl n+2 n+2
+ Cyl Gikers — qin + G — qji14]

+ A2j[qj"flti-1|,l - 2 ]

n+ 1 n+2
Qi — Qi t g1

n+2 n+2 ]

+ Ayl giithy — gt - gla’ + gias ] (48)

and

n+1

n+2 _ n+1 n+2 n+2 n+1
Pin- = pia + Cylpiita — P~ + P — Piliul

n+2 n+2 n+1 n+1
+ Apiiin — Pl — Pid + Pitiul

n+2 n+2 n+1 n+1

+ Coyulpiitiig — pie” + Pl — pii-1]
n+2 n+2 n+1 n+1

+ Aylpiiciy — Pl — pin + piul

n+2 n+2 n+1 n+1
+ Asulpiiis: — P — Pia t Pkl

(49)

For both algorithms, the solution for the output at ¢ = (n +
D)Atis u™! = (p"*' + ¢""')/2. The solution for the output
att = (n + 2)Atis u™? = (p"*? + ¢"*?)/2, which can also
be used as the initial value for the next step computation.

Unconditional stability of the above algorithms can be seen
from analysing the computation of either p or ¢g. For example,
stability analysis for p in the algorithm in Eqs. (45)-(49)
results in the following ‘‘local’’ amplification factor:

_ [1-(A+Cy) ~ Ay + Cy) ~ Ay] + (A + Cpe™ + (Ay + Cz,‘k)eiﬂ + Ay’

Table 1 One-dimensional computation
At ONEDA ONEDB A
0.00001 STABLE STABLE 1
0.00005 STABLE STABLE 5
0.0001 STABLE STABLE 10
0.001 STABLE (Une=400.01, STABLE 100
at N=9314, 2nd node)
0.002 Upgy=402.17 STABLE 200
{at N=1000, 2nd node)
0.005 UNSTABLE STABLE 500
0 ._O 1 UNSTABLE STABLE 1000
0.1 UNSTABLE STABLE 10000
10 UNSTABLE STABLE 10"

The above equation can be denoted by Hy, = H{P’H. Since
A[ > C]j and Azj > Cij, Hﬁ) and Hj(]%) Satisfy |Hj(/l)I < 1 and
|H | < 1. This results in {Hj;,| < 1. The stability of computa-
tion for p in the algorithm in Egs. (40) - (44) can be readily
seen by simply letting Cy;, = 0 in (50).

3 Numerical Examples

Since the new method given from Egs. (34) to (37) is a
generalization of the algorithms previously developed, exactly
the same accuracy can be achieved when a corresponding ap-
proach is adopted. Therefore, comparisons of accuracy of nu-
merical solutions will not be shown. As has been pointed out,
because the key is stability, numerical testing is focused on the
stability of computation for various algorithms.

3.1 Stability of Explicit Algorithms for Solving One-Di-
mensional Equations. To verify the stability of the new ADE
algorithms for solving diffusion equations in non-Cartesian co-
ordinates, the following initial and boundary value problem of
one-dimensional diffusion in the radial direction is considered:

Ou adu 9%

— == — 51

o ror “or b
u(0, ry = u’ u(t,Ro) = u(t,R) =uri r€[Ry, R ].
Two computer codes were programmed: (1) code

ONEDA —based on the algorithm in Egs. (4) and (5); and
(2) code ONEDB —based on the algorithm in Eqs. (34) -
(37).

Firstly, the codes were tested by comparing them with one
based on the C-N algorithm, it was found that the numerical
solutions were almost identical. To compare the stability of
the different ADE algorithms, the following one-dimen-
sional computational model was employed. A total of 1001
nodes along the radial direction were used in the computa-
tion. R, and R, were taken as 0.1001 and 0.0001 respectively
so that C,,x = A/4 due to the use of central difference. The
parameter a in Eq. (51) is given as 0.001, that initial value
at every internal node is #° = 399, and the value at every
boundary node is ur = 400. The use of this model is purely
for the purpose of stability examination. Numerical tests

ik

-4 -

[1+ (A + Cip) + (Ay + Cyi) + Ayl — (A + Clj)eia - (Ay + Cij)eiﬂ - ASjkeiy
Ciy) — (Ay — Cyp) — Ayl + (A1 — Cle™ + (Ay — Cy)e ™ + Aye™

[1 + (A — Cy) + (Ay — Cy) + Aspel — (A —
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Fig. 1 The cross section used for computation

were carried out for various step lengths of Az. The results
observed at N = 10,000 are listed in Table 1. Single preci-
sion was used for the computation.

It can be seen from the results that the spectral stability
analysis gives a very conservative stability prediction. It
is also found that while ONEDA is conditionally stable,
computation with ONEDB is unconditionally stable.

3.2 Stability of the Algorithms for Solving Two-Dimen-
sional Equations. Two computer codes TWODA and
TWODB were developed based on (1) the explicit method
in Eqs. (23) and (24); and (2) the explicit algorithm in
Eqs. (34)-(37).

To examine the stability of the explicit algorithms, tran-
sient heat conduction is computed for a cross section of a
ring shown in Fig. 1.

In all of the computations carried out, R, = 0.001, R, =
0.101 and there are 101 nodes in the directions of both R
and Z, respectively, so that Cu. = A;/4. This is because
the boundary condition is of the first kind, which means that
the computation should start at the second node (r; = 2Ar,).
The value of ¢ in Eq. (1) is 0.1.

First of all, the validity of these codes was checked for
L = 10. This makes the problem almost one-dimensional
along the line of symmetry. Numerical solutions from all
of the above codes were thus compared with those from
the codes for one-dimensional problems. Then, numerical
output from the above two codes are cross-checked for L =
0.1 and At = 0.00001. For the purpose of assessing stability,
computation was carried out for L = 10, L = 0.1, and L
= 0.001 to illustrate the influence of the variation of A,.
Numerical tests were catried out for the initial value u°® =
399 and the boundary value ur = 400 with various step
lengths of Az. The results observed at N = 3000 are listed
in Tables 2, 3, and 4. Single precision is used in the compu-
tations.

Table 2 Two-dimensional computation, L = 10

At TWODA TWODB 1Y Ay
0.0001 STABLE STABLE 10 0.001
0.0002 | up,=400.14 (At STABLE 20 0.002
N=100, j=2, k=100)
0.0005 UNSTABLE STABLE 50 0.005
0.1 UNSTABLE STABLE 10° 1
1 UNSTABLE STABLE 10° 10
100 UNSTABLE STABLE 107 1000
10° UNSTABLE STABLE 10% 10°

Journal of Heat Transfer

Table 3 Two-dimensional computation, L = 0.1

At THODA TWODR By By
0.00001 STABLE STABLE, 1 1
0.00002 | u,=400.12 (At N=2, STABLE 2 2

§=100, k=100)

0.00005 | Uge=400.3 (At N=2, STABLE 5 5

=100, k=100)

0.0001 Upy=400.4 (At N=2, STABLE 10 10

j=100, k=100)

0.01 UNSTABLE STABLE 1000 1000
1 UNSTABLE STABLE 10° 10°
10 UNSTABLE STABLE 10¢ 10°
10° UNSTABLE STABLE 0% | 10%

Table 4 Two-dimensional computation, L = 0.001

At TWODA TWODB A a,
0.00001 STABLE STABLE 1 10!
0.00002 Upay=400.16 (At STABLE 2 2x10*
N=600, 3=39, k=52)
0.00005 | up=400.2 (At STABLE 5 5x101
N=1943, =40, k=35)
0.0001 Upmax=400.2 (At STABLE 10 10°
N=1888, j=40, k=61)
0.01 Upax=400.1 (At N=665, STABLE 1000 107
§=39, k=51)
1 Upax=400.3 (At STABLE 10° 10°
N=1937, =86, k=57)
10 Unax=400.3 (At STABLE 108 10'°
N=1999, j=12, k=53)
10° Unax=400.144 (At STAELE 1012 10Y7
N=1817, j=38, k=49)

4 Conclusions

As a result of the analysis and numerical experiments in this
paper, it is concluded that the new ADE algorithm described
in this paper possesses roughly the same accuracy when com-
pared with the ADI counterparts and the Finite Element method
(based on linear interpolation). Since the algorithm proposed
in this paper is explicit and no simultaneous equations need to
be generated and solved, less CPU time and memory are re-
quired. Also, as a result of its unconditional stability, the use
of larger At values is allowed, which may save CPU time and
make programming easier. No restriction on At for the sake of
stability indicates that the algorithm may be used for solving
elliptic equations (steady-state problems) in the areas described
in this paper.

Perhaps the most important contribution of this research is
that it may have provided a way for solving diffusion equations
in arbitrary areas when the general expressions of the equations
are considered. This is because in practical situations, in addi-
tion to the first derivatives, mixed derivatives are required to
be considered in constructing numerical algorithms (see Wang
and Crawford, 1997). Such problems are readily solved using
the proposed new approach.
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investigating the classic Beck’s problem. It is shown that accurate and stable numeri-
cal results occur without resorting to any stabilizing scheme beyond the implementa-
tion of a global basis representation for the temperature distribution. As a global
time method the entire space-time domain is resolved in a simultaneous fashion. The
approach is also extendable to multidimensional and multiprobe situations without

difficulty. In direct problems the method has been successively applied to initial value
problems, Volterra integral equations, and parabolic and hyperbolic partial and
integro-partial differential equations.

1 Introduction

Inverse heat conduction involves the application of diffusion
theory for estimating unknown boundary conditions, energy
generation rates, or thermophysical properties through internal
measured temperature histories at one or more locations. Typi-
cally, discrete data (Beck et al., 1985), as obtained from an
embedded thermocouple, is used in the model. Applications
involving atmospheric entry of space vehicles, heat treatment,
and turbine blade design can utilize inverse analyses. In thermal
design it is often desirable to be able to overspecify (or con-
strain) a location in order to assure a desired transient tempera-
ture distribution. In this case it is desired to know what boundary
input would be required to generate this prescribed history.
Areas involving heat treatment processes and inverse solidifica-
tion design processes (Frankel and Keyhani, 1996) can benefit
from such a methodology. The interested reader is referred to
the exposition by Beck et al. (1985) for further applications
and a detailed literature review.

Unlike direct problems, inverse problems possess several un-
desirable mathematical and numerical characteristics that must
be addressed in order to obtain meaningful results. Direct prob-
lems possess clear mathematical theories for well-posedness,
while inverse problems are typically ill-posed in the sense of
Hadamard. That is, a small change in the input data can produce
a large change in the output. Ill-posed problems of this sort
seem to be paradoxical in that the condition number grows with
the quality of the approximation. A large condition number may
indicate that excessive roundoff errors may be looming which
in turn can produce erratic or unstable results. Owing to this
dilemma, numerical schemes involving Tikhonov regularization
and future information (Beck et al., 1985) have been proposed
for stabilizing the solution.

The present offering proposes a natural and unified treatment
for resolving both inverse and direct problems. In this paper
we demonstrate several fundamental features of the developing
methodology without undue complication. This paper serves to
introduce the concept and to lay down a foundation that allows
multidimensional and multiprobe solutions to be developed.

This paper is organized as follows. The mathematical formu-
lation for the transient, linear, one-dimensional heat conduction

Contributed by the Heat Transfer Division for publication in the JOURNAL OF
HeaT TRANSFER. Manuscript received by the Heat Transfer Division January
21, 1997, revision received August 11, 1997; Keywords: Conduction; Materials
Processing and Manufacturing Process; Numerical Methods. Associate Technical
Editor: R. W. Douglass.
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problem is presented in Section 2. Section 3 presents the formu-
lation for the inverse heat conduction problem. Section 4 pres-
ents the new numerical solution method. Section 5 presents
some preliminary results indicating that accurate and stable re-
sults occur. Section 6 discusses some applications where addi-
tional constraints can be imposed in the formulation. Finally,
Section 7 presents some concluding remarks.

2 Forward Problem

In this section the mathematical formulation is developed for
a well studied heat conduction problem. In order to demonstrate
the merit of the proposed approach, a conventional test problem
is investigated in some detail. Ozisik (1993) and Beck et al.
(1985) consider the one-dimensional paralle! plate geometry
having unit dimensionless length. The surface at x = 0 is ex-
posed to a transient dimensionless heat flux denoted by ¢(¢),
while the back face is insulated at x = 1. These conventional
dimensionless quantities (though renamed here) can be found
in Ozisik (1993, p. 593). Using the dimensionless forms defined
in Ozisik (1993), the heat conduction equation is

o
Ox?

subject to the boundary conditions

(x,t)=%(x,t), x€ (0, 1), t>0, (la)

oT
- —(0,1) = q(2), (1b)
ox
a—T(l,t)=0, t >0, (1c¢)
ox
and the initial condition
T(x,0)=10, x¢€][0,1]. (1d)

Here, continuous input data is given by the auxiliary condition
displayed in Eq. (1b). The partial differential equation ex-
pressed in Eq. (1a) subject to the auxiliary conditions given in
Egs. (1b)~(1d) generate a well posed mathematical problem
if g(¢) is known,

Using the finite integral transform technique (Ozisik, 1993),
the solution of Eq. (1) for T(x, ) in terms of g(#) is

cos (Aax) [*

TG0 = TS |

m=0

q(tr)e——)\;‘:l(r-—-x’)dtr’
0

xe[0,1], t=0, (2)
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where the discrete spectrum of eigenvalues is given as A, =
mm, m = 0, 1, ... and the normalizations integrals are N(\,)
=LNA\) =gm=1,2,...

Evaluating Eq. (2) at x = 1 produces

N o« (_1)m J't

0= X e -

If g (r) is known, then Eq. (2) is the formal solution. If ¢(¢) is

unknown but 7°(1, ¢) is given, then the problem is considered

an inverse problem and it is viewed as being ill-posed. This ill-

posedness is evident from viewing Eq. (3) which indicates that

in order to determine ¢(¢), a Volterra integral equation of the

first kind must be solved. This type of integral equation is
considered mildly ill-posed (Wing, 1991).

g(tDe™dr 1= 0. (3)
0

3 An Inverse Heat Conduction Problem

Consider the classic inverse problem where overspecified
data at a boundary is prescribed; namely,

T(Ly=f) (or=fi=12,....,M), (4a)

and

a—T(l,z)=0, t >0, (4b)
Ox
where the heat equation given in Eq. (1a) and initial condition
prescribed in Eq. (1d) are still valid, If discrete temperature data
is specified at discrete values of time, #;, i = 1, 2, ..., M, then
we denote these values of temperature by f;,i = 1,2, ..., M.
For convenience in the analysis the temporal and spatial do-
mains are mapped into a new computational domain through
the linear transformations

n=2x-1 ne[-1L1], xel01], (5a)

and

é‘zi_l’ 66[—1, 1], IG[O, tmax]’

where N = 1,,,/2 and where t,,,, represents the maximum time

(5b)

Nomenclature

of interest for the time evolution of the problem. These choices
will become evident as the solution method is developed. Using
these new independent variables, the mathematical formulation
for the inverse heat conduction problem becomes

Lig(n, 1 =0, (n, &) € [-1, 1], (6a)
where the differential operator L is
ik 19
L= ——. 6b
on® 4N O¢ (60)
The prescribed one-sided boundary conditions become
0,8 =F() (orF;,i=12,...,M), (6¢)
08
— (L& =0, £e[-L1], (6d)
on
with the initial condition
#(n,-1) =0, nel-11], (6e)

where 8(n, &) = T(1 + n/2, N\(1 + £)), and F(&) = f(A(1 +
&) or F, =86,,i=1,2,..., M. For the time being it is
assumed that F(£) is a real and continuous function in the
domain of [—1, 1]. (Note that F(—1) = 0 for continuity pur-
poses.) From viewing the domain definition shown in Eq. (6a),
it appears that (n, £) is defined in a square. Finally, the unknown
surface heat flux can be expressed as

Q(f)=—2?(—1,g>, fel-11.  (6f)
Y

Beck’s future information method (Beck et al., 1985) has
generally been applied to such problems. Other approaches have
also been considered (Beck et al., 1985) for solving this type
of problem in the presence of discrete data. To indicate the
versatility of the proposed approach, we present preliminary
results for the following two situations: (i) continuous F(£),
and (ii) discrete F; = 6,,i=1,2,..., M.

a,(€) = time varying expansion coef-
ficients, Eq. (7a)
aht'(€) = approximate time varying
expansion coefficients, Eq.
(8)
by = expansion coefficient, Eq.
(10)
ch (&) = approximate time varying
expansion coefficients, Eq.
(9a)
¢y’ = expansion coefficient, Eq.
(29)

f(¢) = time varying specified bound-
ary temperature at x = 1, Eq.
(4a)

i = discrete temperature at x = 1,
Eq. (4a)

F (&) = transformed time varying
temperature boundary condi-
tion at n = 1, Eq. (6¢)

F, = transformed discrete tempera-
ture at n = 1, Eq. (6¢)
! = length of slab
L = differential operator defined
in Eq. (6b)
N(\,) = normalization integrals
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Q(&) = transformed heat flux, Eq.

(61)
Ry = residual function defined in
Eq. (13)
R4 (&) = temporal residual defined in
Eq. (22¢)

R (&) = temporal residual function de-
fined in Eq. (22a)
t = dimensionless time, at,/1?
t, = dimensional time
Imax = mMaximum dimensionless time
of interest
T = temperature
T,,(n) = Chebyshev polynomial of the
first kind
x = dimensionless space, x,/{
X, = dimensional space

Greek

a = thermal diffusivity

6 = dirac delta function

n = transformed spatial variable,
Eq. (5a)

7; = spatial collocation point,
Eq. (14¢)
# = transformed temperature
Oy = approximate transformed
temperature, Eq. (9a)
Oy, = approximate transformed
temperature, Eq. (8)
A\ = constant, £,,/2
N, = eigenvalue
€ = transformed time, Eq. (5b)
&, = temporal collocation point,
Eq. (14b)
o = constant, Eq. (27)
W,.(n) = spatial trial function, Eq.

(9b)
wp(n) = spatial trial function, Eq.
(17b)
Q..(n, £) = space-time trial function,
Eq. (195)

Q,,,,,,( 7, £) = space-time trial function
with embedded constraint,
Eq. (30b)
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4 Solution Methodology

In this section a weighted-residual methodology is provided
for developing an approximate solution for the unknown tem-
perature (7, £) and, in particular, the resolution of the surface
temperature 8(—1, £) and its corresponding surface heat flux,
Q(&). To begin, consideration is directed toward having contin-
vous surface data, i.e., F(£). Later we develop a corresponding
method that directly utilizes discrete data. This second approach
illustrates that presmoothing of the data is unnecessary. The
proposed nontraditional time implementation follows from
Frankel and Keyhani (1996), Frankel and Osborne (1996), and
Frankel (1996b).

(i) Continuous Input, F(£). To begin, let the unknown
function 8(n, £) be represented by the series expansion

o

9(n, &) = X an(E)Tu(n),

m=0

(&) e (-1, 1), (7a)

where the spatial basis functions {7,,(n)}.-0 are chosen as
Chebyshev polynomials of the first kind (Rivlin, 1974) and are
explicitly given by

(7b)

Chebyshev polynomials have several computational features
and have been used with much success in solving problems that
arise in fluid mechanics (Orszag, 1971), solid mechanics (Kaya
and Erdogen, 1987), and radiative heat transfer (Frankel,
1995a, b). Though this study uses this basis set, other basis
sets have yet to be explored and may possess attributes worth
exploiting. Additionally, finite difference and finite element ana-
logs will become evident as the method is presented. The un-
known time varying expansion coefficients are denoted by the
infinite set { a,,(£) } m=0. In practice, this infinite series represen-
tation must be truncated after a finite number of terms, say N
+ 1, and thus Eq. (7a) must be reconsidered as
N+1

0(779 5) ~ ®N+l(n7 g) = 2 ai\n,+1 (6)7'"1(/)7):

m=0

T,(n) =cos[mcos™' 0], m=0,1,...

(m, &) e (-1, 1), (8)

where a,,(§) ~al*'(&),m=0,1,...,N,N + 1 for sufficiently
large N. It is possible to introduce the known auxiliary condi-
tions expressed in Eqs. (6¢)—(6e) into the expansion. This
removes a potential source of error from the numerical solution.
Thus, with the basis set so chosen and given in Eq. (7b), the
trial functions can be devised in such a manner to incorporate
the known boundary and initial conditions. Upon introducing
the one-sided boundary conditions at n = 1, and after a straight-
forward set of analytic manipulations, the expansion for
Oy.1(n, ) can be written as
N

Ov(n, &) = F(&) + X (&) Wnln),

m=1

where Ox(7, £) = O, (7, £), and ch(€) = antl(£), with

(9a)

Tm+
U, (n) = Tyr(n) + (1 = ) -dd——‘ (- 1,
n

m=1,2,...,N. (9b)

Let
pm

(€)= 2 brT (&), m=1,2,...,N,

n=0

(10)

where the time varying expansion coefficients are expressed in
terms of a finite sum of Chebyshev polynomials of the first kind
and are given in Eq. (7b) when n — £ and m — n. Substituting
Eq. (10) into Eq. (9a) for c¢h(£) produces
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N Py

Ou(n, &) = F(&) + X, X brT.(OT.(n).

m=1 n=0

(1)

Next, the initial condition is introduced into the series expansion
shown in Eq. (11) to produce

N P

Bu(n, €) = F(€) + 3 3 BIITL(E) + (~1)™ 1 Tu(n),

m=1 n=1

(m, &) € [-1, 1]

With this expansion all known auxiliary conditions are exactly
satisfied.

Clearly, from viewing Eq. (12), the expansion coefficients
br,n=12,...,ps,m=1,2,..., Nneeds to be determined
by some manner. The weighted-residual method of collocation
is now incorporated to illustrate the principle of the proposed
methodology. Following Finlayson (1972), we substitute the
expansion for the temperature into the field equation displayed
in Eq. (6a) to arrive at the residual equation

Ry(On(n, £)) = LlOn(n, )], (n, &) € [-1, 1].

The collocation method is defined through the orthogonality
statement (Finlayson, 1972)

(Rv(On(n, £), 6(n = 1, € = Edh = 0,
k=1,2,..

(12)

(13)

Lo J=1L2,...,N, (l4a)
where &, k=1,2,...,p;andn;,j = 1,2, ..., N are prescribed
temporal and spatial collocation points, respectively. (For nota-
tional simplicity we omit the *‘j*’ dependency on &;.) For the
sake of demonstration purposes we define these points by the

open rules (Delves and Mohamad, 1988)

cos(u), k=1,2....p, (14b)
2p;

I

&

1l

cos (ME) j=1,2...,N. (l4¢)

Ul N

Upon substituting Eq. (13) into Eq. (14a) where Eq. (12) is
explicitly used in place of dy(n, £), we arrive at

N Py
2 2 bILI(T.(&) + (=)™ W,(n)] = ~LIF(&D],
m=1 n=1

=1,2,....p5 j=12,...,N. (1%)
Equation (15) describes a system of linear algebraic equa-
tions for the unknown expansion coefficients {5}, n = 1, 2,
L Pmym=1,2,..., N. Once these coefficients are deter-
mined we can reconstruct the solution for 8y(7, &) through Eq.

(12).

(ii) Discrete Input, F;,i = 1,2,..., M. The direct use
of the given probe data is highly appealing since no presmooth-
ing is assumed. The data stream or streams can be directly
imported into the numerical code and utilized as such in the
actual computation. Also, the proposed approach possesses ob-
vious generalization to multidimensional geometries and
multiprobe inputs. In the context of the weighted-residual ap-
proach, we begin in a similar manner as outlined in the investi-
gation of situation (i). Let

@

0(n, &) = 3 a.(&)T.(n),

m=0

(16a)
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or upon truncating the series we write
N

(0, €) =~ On(n, &) = X an(€)Tu(n).

m=0

(16b)

Following our previous logic we can incorporate the known
functionally explicit boundary condition displayed in Eq. (6d)
to arrive at

N
HN(T)’ 6) = Z bﬁ(é‘)wm(n)s

m=1

(17a)

where

1, m=1;
ar,
dn

with 5Y(€) = af(¢) and by(€) = am(§), m = 2,3, ..., N.
As before, we assume

wn(n) = (17b)

(1), m=273,...,N,

Tm(n) -n

L; Im

bn(€) = X brT,(6),

n=0

(18)

and upon substituting Eq. (18) into Eq. (17a) and making use
of the known initial condition shown in Eq. (6e) we find

N Py
01‘/(77’ 5) = Z z bZ)Qm,n(n’ f)’ (19(1)
m=1 n=1
where the trial function becomes
Qm.n(n’ E) = [Tn(g) + (—1)n+l]wm(n)
=1323"-ypm; m=1,2,|.‘,N. (1917)

Unlike our previous development the last known boundary con-
dition, namely Eq. (6¢) where it is understood that discrete
data is provided, cannot be used at this juncture. It is clear
from Eq. (19«) that the unknown expansion coefficients need
resolution. Again, we call upon the weighted-residual method
for assisting in acquiring these constants. Substituting the
expansion shown in Eq. (19a) into Eq. (6a) produces the resid-
ual equation

Ru(On(n, £)) = LIBn(n, )1 = X 2 by LI (. )],
m=1 n=|
(n,§) €-1,11. (20)

However, we now propose, when discrete data is prescribed
at discrete times, to use spatial collocation while implementing
a temporal, discrete least-squares approach. Though this presen-
tation is in the context of a single spatial dimension, it is appar-
ent that this approach is extendable to multidimensions. The
traditional dilemma associated with these ill-posed problems
typically manifests itself through the temporal variable. This

q(t)

Fig. 1 Classic Beck’s problem having triangular surface heat flux im-
posedatx =0fort >0
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Fig. 2 Imposed overspecified surface temperature at x = 1 for (a) con-
tinuous input, (b) discrete noiseless data, and (c) discrete noisy data
with o = 0.005

fundamental treatment strongly suggests that the approach of-
fered here may represent a fundamental clue on resolving a
broad class of inverse problems. It should also be evident that
conventional methods, such as the finite element method, can
be used in these problems with the understanding that a nontra-
ditional time treatment should be considered.

Two inner product statements are developed for probe and
nonprobe locations. For the one-dimensional one-probe problem
at hand we define the spatial collocation points by the closed
rule (Delves and Mohamad, 1988).

(21)

The closed rule includes the end points. The rationale for pre-
senting the closed rule is evident since we want the probe loca-
tion to coincide with a point in the collocation set. With this
set of collocation points the probe location at 9 = 1 corresponds
ton = 1,ie.,j = 1. At the probe location the data stream is
discrete and known; therefore, the orthogonality statement for
the discrete least-squares method is
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Fig. 3 Predicted surface temperature T(0, t) for Case (i) using input data shown in Fig. 2a when: (a) N = 6, P = 21;
(b)N=6,P=24;(c)N=8,P=21;and (d)N =8,P = 24

OR )

5 1

(§)>=0, Jj=1

(22a)

while the orthogonality statement supporting spatial collocation
and the discrete least-squares method at nonprobe (j = 2, 3,

..., N) locations is

o6t (a) N=6P=2]
0.4
s
Kl o
)
0 - eyl
|
0.3 X 1 T ) %.s
o8t (o) N=8,P=n
04
=)
fS!a% 0.2
\
0 —— "l
|
0.2 1
2 (X 0 i3 3 7.3

t

where

J B8R, ]
Ry(&), =5 (&) )=0, j=2,3,...,N, (22b)
ob!
R/(€) = (Ru(Bu(n, €)), (1 — 1)),
j=1,2,...,N. (22¢)
® N=6P=n
—
[}
1
[) 0.9 1 1.% 2 2.9
@ N=8 P
}
|
[} 1 1.9 2 2.3

t

Fig. 4 Predicted surface heat flux q(0, t) = —T,(0, ) for Case (i) using input data shown in Fig. 2a when: (a) N = 6,
P=21;(b)N=6,P=24;(c)N=8,P=21;and (d) N =8,P = 24
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Fig.5 Resulting surface temperature T(1, t) for Case (ii} using the error-
less discrete data shown in Fig. 2b

The residual function needed in Egs. (22b) and (22c¢) is de-
scribed by Eq. (20), while the residual function K } (&) is deter-
mined from the data stream located at n, = 1 (j = 1).

The inner product shown in Eq. (22¢) describes the action
of collocation in the spatial variable. Upon substituting Eq. (20)
into Eq. (22¢) we explicitly find

N P,
R}{/(é’)= 2 zb:’L[Qm,n(nj’é-)]’ j=1’2"--7N-

m=1n=1

Clearly, at this point time is still represented by a continuous
function at each distinct collocation point j. Equation (23) is
valid at node j = 1, although we will disregard this equation at
that node in lieu of using the data stream.

To develop explicit and usable relations for the inner product
displayed in Eq. (22a) for the probe stream, we appeal to the
classical definition of the discrete least-squares method, i.e.,

S = ||R1|v||% = 2 O, &) — '91')2,

i=1

(23)

(24a)

or, upon substituting the expansion for y(7, £) as shown in
Eq. (19a) into Eq. (24a), we find that

T(0,t)

T(0,t)

¥4

m

M N
Sl = Z (Z 2 bzl Qm,n(nl! 51) - 01’)2'

i=1 m=1 n=1

(24b)

Minimizing this expression with respect to b} fork = 1,2, ...,
p; produces

aS M N Py
=22 (X X brQualm, &) — 6) Quu(ni, &) = 0,
abk i=1 m=1 n=1
k:1121---,p19 (250)
or, upon some simplification, we find that
N Py M M
Z Z b;:"(z Qa1 E) Qi1 €)) = Z 0: k(15 &),
m=1 n=1 =1 i=1
k=1,2,...,p. (25b)

Next, we present the methodology for the mathematical state-
ment displayed in Eq. (220). Let

) M N P,
S = IRu3 = Z (2 2 bRL[Qua(nys €)1V,

Jj=2,3,...,N. (26a)

Following Frankel (1996a), we minimize §; with respect to
each coefficient ] for fixed j, j = 2, 3, ..., N in the finite set.
Doing so yields

35S, M N Py
gjj =22 (X X brLIQua(my, EDD) LIQu(n;, €)1 = 0,
k

=l m=1 n=1

k=1,2,...,p5 j=2/3,...,N, (26b)

0.4 (b)
0.3
5
& 0.2
0.1
N=6,P=10
[
0 0.5 1 1.% 2 2.8

T(0,t)

Fig. 6 Predicted surface temperature T(0, t) for Case (ii) using the discrete input data shown in Fig. 2b when: (a) N =
6,P=8(b)N=6,P=10;(c)N=8,P=8;and (d)N=8,P =10
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or sented in this paper, the dashed line represents the numerical

NP ” solution obtained using the methods of this paper. The solid
S b LIQa(my, DL (n;, €D]) = 0, line represents the analytic solution as obtained from Eq. (2)

E’ et it W 1l using the prescribed triangular heat flux shown in Fig. 1. Also,
for convenience, p,, = P,m = 1,2, ..., N, and thus no attempt

k=1.2....p3 J=23....N. (26¢) a6 been made to optimize the methodology with regard to the
© Notice that the expansion coefficients displayed in Eq. (25p) selection of the temporal collocation set.

for j = 1 and Eq. (26¢) forj = 2, 3, ..., N are fully coupled Figure 3 presents the predicted’ surface temperature 7'(0, )
through the two expressions. This linear system permits solution ~ for € (0, fmy = 2.5) when a various number of terms are
for the expansion coefficients. retained in the finite series representation shown in Eq. (12).

) From viewing this set of figures it is evident that the analytic
5 Results solution can be graphically replicated by the proposed method

with the exception of a small neighborhood near ¢ = ¢,,,,. Beck’s
To test the proposed methodology we appeal to the bench-  fyture information method also suffers from not being able to
mark case offered by Beck et al. (1985) involving a triangular  resolve the solution to 7. From the physical viewpoint this is
surface heat flux at x = 0. This boundary condition permits an  of no real significance since data can be collected beyond the
analytic solution for the temperature. Using this analytic result  value of ¢,,,, say to tha , and then used to predict the results
the surface temperature at x = 1 (n = 1) is obtained and used {0 value #,,,. The proposed methodology permits graphical con-
for setting up the inverse heat conduction problem. All figures  vergence to be established independent of the effects of a free
and results are presented in the context of the original dimen-  parameter. From viewing these plots it is evident that conver-
sionless variables x, ¢, T for convenience. gence is occuring as both N and P are increased. Additionally,
Using the analytic solution generated from the surface heat g ill-conditioning effects are observed. If ill-conditioning ef-
flux input shown in Fig. 1, we obtain f(z), t > 0, (F(§), and  fects would occur, then appearance of this condition would be
&e[—1, 1]1). Figure 2 indicates the surface temperature history  observed as both N and P were increased.
at x = 1 for the cases considered in this paper. Figure 2(a) Figure 4 presents the exact triangular surface heat flux input
illustrates the continuous input used for Case (i) to describe  and predicted values using the method described in Section 4
F()(F(E)). Figure 2(b) describes Case (ii), which involves  when continuous data is specified at x = 1. It is interesting to
discrete data at x = 1, where 50 equidistant samples are used note the accuracy of the method in resolving the triangular
when At = fry /50 with £, = 2.5. Figure 2(c) describes Case  shape of the time varying surface heat flux. The Chebyshev
(iii) where random noise is introduced into the discrete set of  bagis adequately resolves the shape, and we can readily establish
50 points through graphical convergence through the series of plots.
_ . Figures 5-7 illustrate the predicted solution for Case (ii)
Ti = Towa(1, &) + oRandom(i), 27 using the method of temporaf least-squares and the errorless
where Random(i) is a random number between [—1, 1], as data shown in Figure 2(b). It should be reiterated that this
generated through a random number generator. For this study  approach does not presmooth the data. A curve fit for the input
o was chosen as 0.005. data is obtained as part of the global solution for all space and
Following the mathematical development discussed in Sec- time. Figure 5 displays the predicted solution for the surface
tion 4, Figs. 3 and 4 present the actual numerical outputs using temperature at x = 1. For convenience the data shown in Figure
the method of collocation when continuous input is provided 2(b) is displayed in Figure 5. It is impossible to discern the
at the overspecified boundary condition. In all the figures pre- difference among the predicted solutions for the displayed val-

®

(@ N=8 P=10

t
Fig. 7 Predicted surface heat flux q(0, t) = ~T7,(0, t) for Case (ii) using the discrete input data shown in Fig. 2b when: (a)
N=6,P=8;(b)N=6,P=10;(c)N=8,P =8,and (d)N=8,P =10

Journal of Heat Transfer NOVEMBER 1997, Vol. 119 / 679

Downloaded 11 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 Maximum absolute error of the predicted surface
heat flux using the indicated values of N and P for the

errorless input case

N P Enp

6 8 0.0739
6 10 0.0621
8 8 0.0739
8 10 0.0621

ues of N and P. The curve fitted output for the input data is a
result of the numerical determination of the expansion coeffi-
cients and thus eliminates the need to presmooth; in particular,
to curve fit the data. Frankel and Keyhani (1996) have demon-
strated that presmoothing data for inverse problems by curve
fitting the input data set, can produce dramatically different
output results depending on the degree of the polynomial fit.
Frankel and Keyhani (1996) show that graphically comparable
presmoothed inputs produce vastly different outputs owing to
the ill-posed nature of the problem,

Figure 6 illustrates a set of plots indicating the effect of the
number of terms retained in the finite series representation
shown in Eq. (19a) on determining the surface temperature
T(0, t). The effect of the value for P on the behavior of the
endpoint at t = #y,, = 2.5 is shown in this set. Other than in
the neighborhood about ¢ = 1., convergence is clearly being
established as both N and P are increased. Figure 7 presents
the surface heat flux predicted using the temporal least-squares
method in conjunction with spatial collocation. Again, remark-
able accuracy is displayed as well as the establishment of graph-
ical convergence. To quantify the errors in the surface heat flux,
let the standard error metric be defined as

Evp = max Iqexact(O: ti) g Ia
=1

=1 ... 41
where ¢; represents the predicted surface heat flux at time ¢;.
Table 1 presents the maximum absolute error in the interval te
(0, 0.8tmax = 2) where f; = (i — 1)At,i=1,2,...,41 and
the values of N and P correspond to the values reported in Figs.
5-7. In this way a quantitative measure of the accuracy can be

P
z’

(@)

o 0.2 )
& 4
0.1 "’
Lt Nm§, P=10
ow
o 0.5 1 1.8 p) 7.5
0.4
”
(e) o -~ aad
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&~ *
. /
.,¢ N=B Pm10
Ow
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¢

established for the exact data input case. Table 1 indicates that
the maximum error is more strongly dependent on the value of
P than N for this test case. Also, the maximum error in the
defined time interval occurs at the peak of the triangular heat
flux (z = 0.9), where the polynomial is attempting to reckon
with the discontinuous derivative. Beck et al. (1985; pp. 182,
189, 193) also report that the maximum error coincides with
the peak value of the surface heat flux. At all other times for ¢
< 2 the error associated with the proposed technique does not
exceed 0.025. In fact, the absolute error is typically less than
0.025, up to t =~ 2.35, which actually represents 94 percent of
the chosen interval. By increasing the data set size, i.e., the
number of samples M, the error will tend to decrease.

Figures 810 (Case (iii)) are intended to illustrate the effect
of noise in establishing convergence of the solution. The noise
level used in Figure 2(c) is higher than presented in Ozisik
(1993). Figure 8 presents the surface temperature generated as
part of the solution using the Case (iii) analysis. It is difficult
to discern the four predicted solutions among each other as both
N and P are varied. Figure 9 presents a set of solutions for the
surface temperature at x = 0 using various polynomial orders for
space and time. Again, it appears that convergence is established
except in the small neighborhood about the temporal endpoint.
Finally, Fig. 10 presents the predicted surface heat flux at x =
0 using various degrees of polynomials corresponding to Fig.
9. Again, it appears that convergence is established for the heat
flux. It is expected that with this level of noise the predicted
solution should be about the most noiseless solution.

6 Implications of the Application of the Proposed
Methodology

The universal approach for solving transient phenomena, di-
rect or inverse statements, involves a time-marching procedure,
i.e., taking one step in time and solving for the spatial domain.
In the present method, by inverting a matrix, a simultaneous
solution for the entire domain is obtained. The fact that the
solution for the entire time duration of interest is obtained
through a matrix inversion gives an appearance that the time
dependence is effectively formulated in an ‘‘elliptic’’ fashion.
Therefore, it follows that specification of a constraint at t = #na

0.4
® ,f""“'“‘ Sove
0.3
!V
= 0.2 ¢
"‘ )
0.1 ‘.’
o N=6,P=12
°'~¢‘r‘-z"'.
0 0.8 1 1.% 2 2.4
0.4
(d) Nao’f&.
0.3
."
= 0.2 ¢
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~* N=8P=12
°'ld'¢'"‘¢5" '
0 0.5 1 1.4 2 2.5
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Fig. 8 Resulting surface temperature T(1, t) for Case (iii) using the noisy discrete data shown in Fig. 2¢
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Fig. 8 Predicted surface temperature 7(0, t} for Case (iii} using the noisy discrete input data shown in Fig. 2c when: (a}
N=6,P=10;(b)N=6,P=12(c)N=8,P=10;and (d) N =8, P = 12

an inverse analysis of such problems one could impose the

(a ‘‘time boundary’’ condition) should improve the accuracy
constraint of

of the solution at 1 = f#,,,.
Many problems subject to inverse analyses involve processes

in which transition from one state of steady state to another T (%, ) = 0, x € [0, L], (28a)
occurs. For example, in a quenching process a heated specimen ot
is quenched in a bath and allowed to cool to ambient tempera- o in the present formulation
ture. Also, in experiments planned for the determination of
properties, such as the thermal conductivity, one could collect 96 (n,1)=0, 5e[-1,1]. (28b)
temperature data until steady state is reached. It is clear that for o€
0.8 T .8 T
, .
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Fig. 10 Predicted surface heat flux q(0, ) = —T,{0, t) for Case (iii) using the noisy discrete input data shown in Fig. 2¢
when: (a) N =6,P =10; (b) N =6,P = 12; (c)N=8,P =10, and (d) N = 8, P = 12
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The temperature representation shown in Eq. (12} can be modi-
fied to include the constraint displayed in Eq. (285). The re-
sulting expansion for Case (i) becomes

r
m

N
Ou(n, €) = F(€) + X X CZ‘[TM(&) + (=1

m=1 n=1

_ 1)‘1;—"6“(1)]@,,,(7;), (&) € [-1,1], (29)

when dF/d&(1) = 0 and where ¢} = b3y, and 1, = p,, — 1.
Meanwhile, the temperature representation shown in Eq. (19a)
can be modified to include the constraint shown in Eq. (28b).
The resulting expansion for Case (ii) becomes

m

HN(T]’ £) = 2 Z CrTQm,n(n’ 6)1

(30a)
m=1 n=1
where the trial function is
R dT,
Qa(n, €) = [Tn+|(£) + (- =1+ f)Tgl(l)]wm(n)
n=12...,rm; m=12,...,N. (30b)
The expansion coefficients {cy'},n=1,2, ..., 1, m=1,2,

..., N are determined using the appropriate methodologies de-
veloped in section 4.

Using the constraint of steady state at ¢ = #,,,, the solution
for Cases (i) and (ii) are revisited and presented in Figs. 11
and 12, respectively. A comparison of Case (i) for the tempera-
ture and heat flux predictions shown in Fig. 11 with the corre-
sponding unconstrained results presented in Figs. 3 and 4,
clearly show that the solution at ¢ = £, is in excellent agreement
with the exact solution. By contrasting the predictions shown
in Fig. 12 with the corresponding results presented in Figs. 6
and 7, a similar observation can be made about the constraint
results for Case (ii).

S
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®) N=6R=21
~ 0.
S
‘6 0.2
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i
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0.2 s 1 T3 3 7.5

Fig. 11 Predicted {a) surface temperature T{0, t) and {b) surface heat
flux for Case (i} using input data shown in Fig. 2a and the imposed
constraint shown in Eq. (28) when N = 6, P = 21
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Fig. 12 Predicted (a) surface temperature T(0, t} and {b) surface heat
flux for Case (ii) using the discrete input data shown in Fig. 2b and the
imposed constraint shown in Eq. (28) when N = 6, P = 12

7 Concluding Remarks

The simplified approach and appealing preliminary results
offered in this paper indicate that the methodology should be
investigated further. This observation is especially important
since the methodology reported in Case (ii) has clear general-
ization to multiprobe and multidimensional situations without
additional imagination. Extension to the multiprobe and multidi-
mensional situation is on the agenda and will be reported in a
later work. This approach allows for graphical convergence to
be established, except possibly in the neighborhood of f,,.. This
endpoint character is indicative of the ill-posed nature of the
problem. The global time treatment ‘‘suppresses’” or ‘‘pushes’’
the numerical instability toward the specified value of #,,,,. This
can be illustrated by varying the value of #,,,, and noting that
the instability always appears in the neighborhood of #,,,. That
is, by increasing the value for #,,,, and solving the n — £ domain,
we effectively increase the domain of stability. This continual
suppression can only take place through a global time treatment.
Also, if additional physical constraints are available to the sys-
tem, then the global time treatment can readily accommodate the
inclusion of the constraints, The novel temporal time treatment
offered here possesses several intriguing numerical features due
to its global implicitness. This approach produces excellent re-
sults in direct problems and does not display any endpoint ana-
moly (Frankel and Osborne, 1996; Frankel, 1996b).
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of Spherical Rough Metals

Junction thermal conductance is an important consideration in such applications as
thermally induced stresses in supersonic and hypersonic flight vehicles, nuclear reac-
tor cooling, electronics packaging, spacecraft thermal control, gas turbine and inter-
nal combustion engine cooling, and cryogenic liquid storage. A fundamental problem
in analyzing and predicting junction thermal conductance is determining thermal

contact conductance of nonflat rough metals. Workable models have been previously
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derived for the limiting idealized cases of flat, rough, and spherical smooth surfaces.
However, until now no tractable models have been advanced for nonflat rough “‘engi-
neering’’ surfaces which are much more commonly dealt with in practice. The present
investigation details the synthesis of previously derived models for macroscopically
nonuniform thermal contact conductance and contact of nonflat rough spheres into
a thermomechanical model, which is presented in an analytical/graphical format.

The present model agrees well with representative experimental conductance results
from the literature for stainless steel 303 and 304 with widely varying nonflatness
(2 to 200 um) and roughness (0.1 to 10 pum).

2.0 Introduction

A successful model for thermal contact conductance must
actually consist of a combination of three models: thermal, me-
chanical (contact), and metrological (surface geometry). The
mechanical and metrological models, which are interdependent,
provide estimations of contact spot size, density, and distribu-
tion for use in the thermal model. A model by which thermal
contact conductance of spherical rough metals may be simply
predicted from contact load, material properties, and surface
profile measurements would be of great practical value. The
model should also be sufficiently robust to predict the conduc-
tance for nominally flat (though typically arbitrarily nonflat)
rough metals.

Solutions for thermal contact conductance for the two
bounding cases of flat rough surfaces (e.g., Cooper et al.
(1969); Mikic (1974); Yovanovich (1982)) and spherical,
smooth surfaces (e.g., Clausing and Chao (1965)) have been
developed. The models by Mikic and Rohsenow (1966),
Thomas and Sayles (1974), and Yovanovich and Burde (1978)
for the contact conductance of rough, spherical surfaces are
difficult to use.

Nishino et al. (1993) combined the thermal model by Mikic
(1970) with the mechanical/metrological models by Green-
wood and Tripp (1967) and Tsukada and Anno (1979) to obtain
a model for thermal contact conductance of spherical rough
metals for which both roughness and nonflatness significantly
affect conductance. Mikic (1970) derived a thermal model asso-
ciated with two simple nonuniform contact pressure distribu-
tions (i.e., periodic in one direction or axisymmetric). Green-
wood and Tripp (1967) and Tsukada and Anno (1979) devel-
oped mechanical/metrological models for contacting rough
spheres that predict how roughness causes the pressure distribu-
tion to deviate from the solution for smooth spheres by Hertz
(1896). However, in order to employ the model by Nishino et
al. (1993), the pressure distribution must be laboriously mea-
sured with pressure sensitive films. Also, they did not reduce
the integrals in the thermal model by Mikic (1970) to a more
readily usable format.
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3.0 Model Development
3.1 Assumptions of the Present Model.

1 Contacting surfaces are circular and macroscopically
spherical (see section 3.2). Surfaces are microscopically
rough with a Gaussian height distribution. It is unknown
how significant deviations from a Gaussian distribution
affect contact conductance.

2 The average flow pressure equals the contact microhard-
ness, H., which is determined from H, and o/m (Hegazy,
1985). H, corresponds to the mean pressure within the
macroscopic contact region (0 = r = a;).

3 Heat flux only occurs through solid contacts. That is, fluid
gap conductance and radiative heat transfer are negligible.

3.2 Selection of Spherical Macroscopic Surface Profile.
Though a model capable of dealing with completely arbitrary
surface profiles would have universal applicability, it would
probably be, at best, overly cumbersome if not intractable. One
simplification that may be introduced without sacrificing wide
applicability is the assumption that the macroscopic topography
can be described by one or a few parameters, just as the micro-
scopic topography is often adequately described by combined
root-mean-square roughness, ¢, and combined mean absolute
profile slope, m. A sphere is the simplest macroscopic profile,
because it is completely described by one parameter, its radius
of curvature is p. The modeled geometry is illustrated in
Fig. 1.

Clausing and Chao (1965), Mikic and Rohsenow (1966),
Thomas and Sayles (1974), Yovanovich and Burde (1978),
and Nishino et al. (1993) addressed spherical surfaces in their
models for macroscopic thermal constriction resistance. This
assumption is often justifiable because nominally flat engi-
neering surfaces are often spherical, or at least are quite often
crowned (convex) with a monotonic curvature in at least one
direction.

3.3 Thermal Contact Resistance Model for Nonuniform
Contact Pressure by Mikic (1970). Mikic (1970) derived
expressions for the total (microscopic, R, ¢, plus macroscopic,
R, ;) thermal contact resistance due to a nonuniform, axisym-
metric contact pressure distribution:

Transactions of the ASME

Copyright © 1997 by ASME

Downloaded 11 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


mailto:lambertm@isc.sjsu.edu

o L r P 0.985 r -1
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o0 r P 0.985 r r 2
e Ge) (o))

3L

R. s is the resistance to heat flux caused by imperfect contact
at the microscopic level due to roughness; whereas R, is the
resistance arising from macroscopic gaps between surfaces re-
sulting from nonflatness. Radial distance, r, is measured from
the center of the circular contact region, k is harmonic mean
thermal conductivity, H, is contact microhardness, and b, is the
radius of the contact surface. P [=P(r)] and P, are the local
and average contact pressure, respectively. Defining the pres-
sure distribution remains the crux of the problem.

| ~

R, = 8

DY (2)
n=1

bl

3.4 Pressure Distribution for Contact of Elastic Rough
Spheres. The present thermal-mechanical model incorporates
a contact model by Greenwood and Tripp (1967) for elastic
deformation of rough spheres. However, at the microscopic
level deformation is entirely or predominantly plastic, as borne
out by the work of Sridhar and Yovanovich (1993) for all
but possibly the smoothest surfaces (¢ = 0.2 to 0.3 um). For
applications in which thermal contact conductance is relevant,
contact loads are usually sufficient to cause only elastic defor-
mation at the macroscopic level. Because macroscopic deforma-
tion is often much greater than microscopic deformation for
spherical surfaces, the Greenwood and Tripp (1967) model was
deemed appropriate.

According to Greenwood and Tripp (1967), the mean plane
separation u(r) and u, and deformation w(r) and w, for de-
formable, rough, elastic spheres are related by:

u(r) = up + r*'20 + w(r) — w,. (3)

Greenwood and Tripp (1967) nondimensionalized variables
by including ¢ and p.

uE = ulo wE =wio r*=riN2po
u*(r*) = u(r)fo w*(r*) = w(r)lo
uE(r*)y = uy + r*t 4+ wE(r*) — we
P* = PI(ENo/8p) L* = 2L/(cE2pa)  (4)

L and L* are dimensional load and dimensionless load, respec-
tively. The pressure and displacement equations in dimen-
sionless form are:

PH(re) = (—2 nU‘/Zp—ﬂ> [ J—;—;

2*2
X exp<»~ —'2—>dz* (5)

WH(r*) = Jm rEPE(rAE Y RdE (r% > 0) (6)

wi = f:P*@)de (r* = 0) 7

where z* = z/c is dimensionless height above mean plane of
the rough surface, 7 is the number of microscopic asperities per
unit area, 3 is the radius of curvature of the asperities, and «
is a function of the complete elliptic integral, K(&).

To apply the model by Greenwood and Tripp (1967), a value
for ug is selected and initial values for w*(r*) and wg are

Nomenclature

a,; = radius of macrocontact region
for rough spheres (L stands for
large-scale), (m)

a; 4, = radius of macrocontact region
for smooth spheres from Hertz
(1896), (m)

a, = radius of microcontact (S stands
for small-scale), (m)

b, = radius of component (m)

b, = radius of elemental heat flux
channel supplying each micro-
contact (m)

E = modulus of elasticity (N/m?)

E’' = effective elastic modulus
(N/m?), E' = [(1 — v}/E,

+ (1 = v)/E|™!

fss fi = polynomial regression functions
of b/a (Lambert, 1995)

g = polynomial regression function
of b/a and L* (Lambert, 1995)

h. = thermal contact conductance
(W/m?*K)

H, = contact microhardness (N/m?)

Hy = Vickers microhardness (N/m?)

Jo, J, = Bessel functions of the first kind
k = harmonic mean thermal conduc-
tivity (W/mK), & = 2kik,/

(ki + k)
K (&) = complete elliptic integral of
modulus £
L =load (N)

Journal of Heat Transfer

= combined mean absolute profile
slope (m/m), m = (m} +
m g) 172
P(r) = [=P] local contact pressure at
radius r from center of circular
contact (N/m?)
P, = apparent contact pressure
(N/m?)
P,,, = average contact pressure (N/m?)
P, = maximum contact pressure (at r
= Q) for rough spheres (N/m?)
Pyu. = maximum contact pressure (at r
= 0) for smooth spheres from
Hertz (1986), (N/m?)
r = radial displacement from center
of axisymmetric contact (m)
R = thermal resistance (m’K/W)
TIR = nonflatness (Total Included
Reading), (m), TIR = TIR, +
1R,
u(r) = mean plane separation (m)
uy = mean plane separation at center
of contact (» = 0) (m)
w(r) = deformation due to load (m)
wy = deformation due to load at center
of contact (r = 0) (m)
z = height above or below mean
plane of surface (m)
[ = radius of curvature of spherical
asperity (m)

6 = crown drop of surface (m), 6 =
6 + 6,
€; = bL/aL
. = n™ root of Bessel function J,({,)
1 = number of asperities (peaks) per
unit area (1/m?)
k = function of complete elliptic integral
K[k =K()foré =1,k =K(1/
&) for € > 1]
u = micro = 107% combined with me-
ters or inches
v = Poisson ratio
¢ = modulus of elliptic integral X
p = combined radius of curvature (m),
p=1/p + 1/p)™"
= combined root-mean-square (rms)
roughness (m), o = (¢} + a})'?

Superscripts

' = effective

* = dimensionless, as defined in Eq. 4
Subscripts

L = large scale, macroscopic

n = index of summation

S = small scale, microscopic

0 = at center of contact (r = Q)
1 = specimen or surface 1

2 = specimen or surface 2
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Fig. 1 Contacting spherical rough surfaces showing the macroscopic
contact radius, a, u., predicted by Hertz (1896). Note that a, i, = a,. Also
shown is an idealized array of microcontacts.

assumed. Equations 5, 6, and 7 are employed to alternately and
iteratively to compute w*(r*), wg , and P*(r*) until they con-
verge. P*(r*) is integrated and compared to L*, If the two are
significantly different, a new estimate of w§ is made, and the
iterative displacement-pressure calculation procedure is re-
peated until the integrated load from P*(r*) and L* are essen-
tially equal.

The value ug may be varied over a wide range resulting in
different solutions for P*(r*), w*(r*), and wg for a single
combination of load, surface profile, and elastic properties. Con-
sequently, Greenwood and Tripp’s (1967) model is under-con-
strained. A solution may be obtained even for the physically
impossible case of a negative u¢ , that is, a crossing of the mean
planes of the two surfaces.

In the present study, realistic values of ug were determined
for each set of conditions (i.e., L, o, p, and E"). The theoretical
dimensional pressure, Py, (the maximum contact pressure at the
center (r = 0) of the circular contact region between rough
spheres) was obtained from P*(r*). P, was then normalized
by dividing by the theoretical value of Pyy,, the maximum
pressure at r = 0 for smooth spheres, according to Hertz (1896).
Lambert (1995) determined correct values of u{ so that the
computed Py/Pon, equaled the experimental Po/Poy, (plotted
in Fig. 2) by Tsukada and Anno (1979) and Sasajima and
Tsukada (1981). Their results are available for L* = 0.1, that
is, contacts for which the effect of sphericity is more pro-
nounced. The trend in uy was extrapolated for L* < 0.1, then
used to compute Py/ Py, for L* < 0.1,

Sasajima and Tsukada ( 1981) truncated the pressure distribu-
tion at an effective macroscopic contact radius, a,, beyond
which P(r) becomes negligible. They defined a;/a, u, to relate
the actual macroscopic contact radius for rough spheres to the
macroscopic contact radius for smooth spheres as predicted by
Hertz (1896). Tsukada and Anno (1979) and Sasajima and
Tsukada (1981) provided experimental values of a;/a, u, for
L* greater than 4, as illustrated in Fig. 3. Values of a,/a, y, for
L* < 4 were generated from the model by Lambert (1995).

The trends in Figs. 2 and 3 are explained as follows: L* =
2L/[0E'(2po)''?] decreases as o increases. Physically, this
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Fig. 2 Axial (maximum) pressure ratio, Py/Pou., versus dimensionless
load, L*

means that load is spread over a greater portion of the surface
by rising roughness. The pressure distribution becomes more
uniform, reduced in intensity compared to the Hertz (1896)
theory. Thus, Po/ Py, decreases, while a,/a, y, increases.

3.5 Model for Thermal Contact Conductance of Spheri-
cal Rough Metals. The present model was obtained by using
the contact model by Greenwood and Tripp (1967), as refined
herein, to define the pressure distribution, P(r), in terms of L,
H., E', o, m, p, and b,, then substituting P(r) into Mikic’s
(1970) expressions (Egs. 1 and 2) for R, and R, ,. Lambert
(1995) lists a FORTRAN 90 computer program implementing
the present model.

Buckingham Pi dimensional analysis was applied to deter-
mine the effect of each physical parameter on R¥s and R¥,,
which resulted in the following correlations:

() ()"
. g HCpO' P().Hz
Rc'S =
' b\ bL)
' <61L) ﬂ(“L

= 6.15(L*)04% (8)
<RMM)
poiE’
R?“,L = -
() () (2ol
Pon, ai ai, a
= 1.44(L*)%%, (9)

Initially, component radius, b,, was assumed to equal the
macroscopic contact radius, a;,. Starting values of material prop-

2 M= P U1} T
f— o Sasajima & Tsukada ({ 961 Flg 3a
102 i O Sasajima & Tsukada 1 981 Fig 3b
= A S Flg 3¢
|= v Tsukada& Anno 1979 Flg 7
] & Tsukada & Anno (1979), Fig 8
3 I 4  Tsukada & Anno {1979), Fig 10
é Il %  Tsukada & Anno (1979 Flg 12
2 = H % Tsukada & Anna {1979), Fig13
E T m Regresslon for calculated data
10t I d
-
|
I-
3
il il
!Il
100 % LT

106 105 104 108 102 107 100 {10! 102

Dimensionless Load, L*

103 104

Fig. 3 Macrocontact radius ratio, a,/a, .., versus dimensionless
load, L*
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erties were selected as those for stainless steel 304 (H,. = 2800—
4100 MPa, E = 207 GPa, » = 0.30, and k = 14.9-162 W/
mK). Next, wide ranges of load, L (10~*to 10° N), and surface
measurements, o (0.1 to 10 um), m (0.0316 to 0.316 m/m) (m
= (o' X 109)/10), and p (102 to 10° m), were used to
compute a multitude of results for R¥s and R¥,. Then, material
properties were varied (H, (490 to 4100 MPa), E (42.1 to 303
GPa), and & (6.7 to 391 W/mK)) to generate many additional
results for R¥; and R¥,. The ranges of material properties used
encompass a host of structural alloys and metals, such as magne-
sium alloy AZ31B, aluminum alloys 2024-T4, 6061-T6, and
7075-T5, titanium alloy Ti-6A1-4V, copper, brass, nickel, be-
ryllium, and stainless steel 304. Results were collapsed (super-
imposed ) into single curves by the first two terms in the numera-
tor of R¥, and the only term in the numerator of R¥*,, respec-
tively.

The expressions for R¥¢ and R}, were linearized into the
power law regressions in terms of L* on the right-hand sides
of Egs. 8 and 9 by inserting the term P/ Py g, raised to a different
power in each equation. The dimensionless load, L*, was varied
from 4.2 X 1077 (i.e., essentially optically flat for any realisti-
cally sized component) up to 1.3 X 10* (i.e., a smooth sphere
for all practical purposes ). The exponents of L* have no readily
apparent physical meaning. Finally, results were computed for
the general case in which component radius, b,, does not equal
predicted macroscopic contact radius, a;. The ratio b, /a; was
varied from 107 (i.e., a nearly uniform pressure distribution,
P(r), since only the very center of the predicted P(r) is actually
brought to bear on the surface) up to 10° (i.e., a very small
contact on very large surface, say ¢, = 1 mm and b, = 1.0 m).
This considerably complicated the results, requiring inclusion
of empirical correction factors, 1/f;, 1/f;, and 1/g, in Eqgs. 8
and 9 in addition to the expected term (b,/a.)*. Polynomial
functions for Po/ Pop, @/ ap s, U f;y 1111, and 1/ g are provided
by Lambert (1995) and are plotted in Figs. 2—6, respectively.
L* is defined in Eq. 4, and b,/a, is determined from

b, by be

a_L: < ” ) : < » ><3Lp>1/3
ar He ——
ar sz, Qap 4E

R¥s and R}, yield the dimensionless contact conductance
(h¥s+s)

(10)

1

= —, (1D
R*s + R¥,

hse.

Both R¥; and R¥, increase with increasing L*, which is
directly proportional to load, L. This trend is opposite that
exhibited by all other correlations of contact resistance versus
load, which show that resistance decreases with increasing load.
This departure of the present model from the common trend
resulted from the way in which R*; and R}, were defined in
terms of L*, which is the most convenient and descriptive load
parameter, since it includes load, elastic properties, roughness,
and radius of curvature. Note that both R*; and R¥, contain
load, L, which is atypical of conductance correlations. However,
because L is raised to different powers in R¥sand R¥,, L could
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Fig. 4 Correction function 1/f, versus radius ratio, a,/b,
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1/f.=Rt / Rt.bea

Fig. 5 Correction function 1/f; versus radius ratio, a, /b,

not be removed from these two parameters when combining
them into a single dimensionless conductance, i ¥, , something
not accomplished in any previous investigation. Predictions
made via the present model are interpreted in the same manner
as are other conductance models. That is, experimental data
falling below A¥s,,, as computed from the present model, are
over-predicted by the model and vice versa.

4.0 Results and Discussion

The accuracy and robustness of the present model for contact
conductance of spherical, rough metals are determined by com-
paring it to experimental results from the literature. Nearly all
tractable empirical and theoretical correlations for predicting
thermal contact conductance tacitly assume that surfaces are
nearly optically flat. Such surfaces are herein defined as having
nonflatness TIR (Total Included Reading) of less than 2 um.
TIR is the difference between the maximum and minimum
height measurements of a surface.

Hegazy (1985) and Sridhar and Yovanovich (1993) demon-
strated that the correlation by Yovanovich (1982) is the most
accurate model for nearly optically flat surfaces. His model is
included in the comparisons below to ascertain those cases for
which flat surface models are no longer appropriate and the
present mode! should be used. Also, the present model reduces
to the theory by Yovanovich (1982) for optically flat surfaces.

4.1 Estimation of Unspecified Parameters. Mean abso-
lute profile slope, m, was unspecified in most experimental
investigations performed in the 1960s and 1970s. Lambert
(1995) correlated ¢ and m for experiments in which both pa-
rameters were given, yielding an estimation for m of

Miorz = 0.076 ()52 X 106)0452'

Uncertainty in this empirical correlation may, at the extremes,
be plus or minus a factor of two. However, with sophisticated
profilometers gaining increasingly widespread use, especially in
such applications as electronic packaging and spacecraft thermal
control, for which the expense of a profilometer is certainly
justifiable, estimation of m should be unnecessary.

Also, the radii of curvature of the specimen surfaces are
rarely provided in most experimental investigations. To circum-
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vent this difficulty, the combined radius of curvature, p = (1/
py + 1/py) ™", is estimated from the combined nonflatness TIR.
In the present study, the combined crown drop, 6 = 6, + &,
shown in Fig. 1 is assumed to equal TIR. The value of p is

p = b2/26. (13)

The concept of radius-of-curvature loses relevance if the sur-
faces are decidedly nonspherical. In such instances the present
model may substantially disagree (typically in an over-conser-
vative fashion) with experimental data, but usually by no more
than a factor of three.

For noncircular specimens, an effective component radius,

bi,is
by = VAg/m . (14)

This expression is useful for commonly utilized square or rect-
angular surfaces (provided the length is not, say, more than
twice the width for rectangular surfaces) or less frequently en-
countered triangular surfaces (approximately equilateral ). This
method of estimating b, for noncircular contact surfaces is sup-
ported by the work of Yovanovich et al. (1977).

4.2 Comparison of the Present Model and the Model by
Yovanovich (1982) to Experiments. The present model and
the model by Yovanovich (1982) were compared to representa-
tive experimental conductance results for stainless steel 303
and 304 from the literature. These very similar materials were
selected for comparisons because they are often used in applica-
tions for which contact conductance is a concern, as evidenced
by the volume of available data (364 results for 33 contact
pairs) compiled by Lambert (1995). Also, stainless steel is
corrosion resistant, so that oxidation should not markedly affect
experimental results. Comparisons are shown in Figs. 7(a)
through 7(f) for surfaces ranging from nearly optically flat
(TIR = 2 um) to highly spherical (TIR ~ 200 um) and very
smooth (o = 0.15 um) to very rough (o =~ 11 pm).

The present model and the model by Yovanovich (1982) are
compared in Fig. 7(a) to experimental contact conductance
results by Hegazy (1985) for three nearly optically flat (TIR
= 2.0 um) stainless steel 304 contact pairs with small, medium,
and large roughness (o = 0.48, 2.71, and 10.95 um, respec-
tively). For these three cases, both models provide nearly identi-
cal predictions and agree very well with the data. The average
root-mean-square (RMS) errors for the present model and the
model by Yovanovich (1982) are 17.8 percent and 13.4 percent,
respectively. The present correlation is slightly lower than the
model by Yovanovich (1982) model because the present model
predicts the presence of a minuscule macroscopic contact resis-
tance, R;, due to the very small nonflatness TIR. The present
correlation differs slightly more from the model by Yovanovich
(1982) for the smoothest contact pair (¢ = 0.48 um). This is
because the computed R,, though small for all three contact
pairs, is slightly more significant in relation to the microscopic
contact resistance, Ry, of the smoothest contact pair. Hegazy
(1985) stated that each surface he tested exhibited a TIR of
one to three light fringes (0.3 to 0.9 um), as determined with
an optical flat.

Both models are compared to experimental conductance mea-
surements for three nearly optically flat (TIR = 2 pm) contact
pairs with very small roughness (¢ = 0.14 to 0.16 um) in Fig.
7(b). Note that the data, though somewhat scattered, fall evenly
about the present mode! for which the average RMS error equals
49.6 percent. The model by Yovanovich (1982) is two to three
times greater than the present model and has an average RMS
error of 180 percent. The significantly different predictions by
the two models arise because the present model accounts for
the small R, caused by the minuscule nonflatness, whereas the
model by Yovanovich (1982) does not. R, though minimal, is
considerably greater than the minute Ry resulting from the very
small roughness.
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° Hegazy, 1985,1 & 2: 0=0.48, TIR=1.2

Prosent model > Hagazy, 1985,1 & 2, TIR/0=2.5
"""" Yovanovich (1982) model » Hegazy, 1985,1 & 2
Hegazy, 1985, 3 & 4: 0=2.71, TIR=1 .2

""""""" Present model > Hagazy, 1985, 3 & 4, TIR/0=20.443
g ~ =~ Yovanovich (1882) modsl > Hegazy, 1985,3 & 4

9 4 Hegazy,1885,7 & 8: 0=10.85, TIR=1.2

Present model > Hegazy, 1986, 7 & 8, TIR/0=0.110
Yovanovich (1982) model > Hegazy,1985,7 & 8
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Fig. 7{a) Present model and model by Yovanovich (1982) compared to
experimental results by Hegazy (1985) for nearly optically flat (TIR < 2.0
pm) stainless steel 304 with small, medium, and large roughness (o =
0.48, 2,71, and 10.95 um)
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2 ° Clausing & Chag, 1965, 18: 0=0.14, TIR=1.0
Gyorog, 1970: 0=0.16, TIR=1.12

M Smuda & Gyorog, 1969: 0=0.14, TIR=1.14
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Fig. 7(b) Present model and model by Yovanovich (1982) compared to
experimental results by Clausing and Chao (1965}, Gyorog (1970), and
Smuda and Gyorog (1969) for nearly optically flat (TIR < 2.0 um) stainless
steel 303 and 304 with very small roughness (¢ = 0.14 to 0.16 um)

The present model and the model by Yovanovich (1982) are
plotted in Fig. 7(c¢) against experimental results for a slightly
nonflat (TIR = 3.8 wm) spherical contact pair with large
roughness (o = 4.83 um). Both correlations yield nearly identi-
cal predictions and agree well with the data. The RMS errors
for the present model and the model by Yovanovich (1982) are
26.4 percent and 31.9 percent, respectively.

Both models are graphed in Fig. 7(d) with experimental
results for a very smooth (¢ = 0.11 um), slightly nonflat (TIR
= 3.75 pm) spherical contact pair. Note that the nonflatness,
TIR, for the surfaces in Figs. 7(¢) and 7(d) are nearly equal.
The present correlation closely approximates the data in Fig.
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Fig. 7(c) Present model and model by Yovanovich (1982} compared to
experimental results by Mikic and Rohsenow (1966) for slightly nonflat
(TIR = 3.8 um), spherical stainless steel 303 with large roughness (o =
4.83 um)
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Fig. 7(d) Present model and model by Yovanovich (1982) compared to
experimental results by Clausing and Chao (1965) for slightly nonflat
{TIR = 3.75 um), spherical stainless steel 303 with very small roughness
(o = 0.11 um)

7(d) (RMS error equals 16.6 percent), while the model by
Yovanovich (1982) is over-predictive (RMS errors equals 937
percent, i.e., approximately an order of magnitude). Note that
for such a smooth contact pair, the relatively small nonflatness
dominates the total (Rs plus R.) contact resistance. The results
in Figs. 7(¢) and 7(d) suggest that the model by Yovanovich
may be extended to surfaces with nonflatness TIR, double that
for optically flat surfaces (TIR = 2 um) for which his model
was developed, provided roughness, o, is approximately equal
to or greater than nonflatness TIR.

The present model and the model by Yovanovich (1982)
are illustrated in Fig. 7(e) with data for a moderately nonflat
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Fig. 7{f} Present model and model by Yovanovich {1982) compared to
experimental results by Fletcher and Gyorog (1968) for markedly nonflat
{TIR = 201 um), spherical stainless steel 304 with very small roughness
(o = 0.11 um)

(spherical) contact pair (TIR = 8.38 xm) with small roughness
(o = 1.17 um). The present correlation agrees well with the
data (RMS error equals 24.6 percent, while the model by Yova-
novich (1982) is over-predictive (RMS error equals 297 per-
cent). Again, this is because R, is substantially greater than Ry.

Both models are shown in Fig. 7(f) with experimental results
for a smooth (¢ = 0.11 pm), markedly nonflat (TIR = 201
pm) spherical contact pair. Again, the present model matches
the data reasonably well (RMS error equals 47.6 percent ), while
the model by Yovanovich (1982) is vastly over-predictive
(RMS error equals 5210 percent, i.e., about a factor of fifty).
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For cases such as this, in which nonflatness is many times
greater than roughness, the contact resembles a relatively
smooth sphere for which the model by Clausing and Chao
(1965) is also appropriate. The discrepancy between the present
model and the experimental data at low loads may be due to
specimens which are not truly spherical.

5.0 Conclusions

The present model performs quite well for all combinations
of nonflatness, TIR, and roughness, o, as demonstrated in Figs.
7(a~f). The model by Yovanovich (1982) performs well for
nearly optically flat surfaces (TIR = 2 pm), provided roughness
is not much less than, say, 0.45 um (Figs. 7(a) and 7(b)). His
model also performs well for slightly nonflat surfaces (TIR =
4 pm), provided o = TIR (Figs. 7(c) and 7(d)). The model
by Yovanovich (1982) becomes increasingly over-predictive
with increasing TIR (Figs. 7(e) and 7(f)), irrespective of
roughness.
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Observation and Computation of
Vortex and/or Reverse Flow
Development in Mixed
Convection of Air in a Slightly
Inclined Rectangular Duct

Combined flow visualization and conjugated numerical heat transfer analysis were
carried out to study the axial evolution of the buoyancy induced secondary vortex
T. F. Lin and reverse flow in a mixed convective air flow through a bottom heated, slightly
inclined rectangular duct. Results were obtained for the Grashof number Gr ranging
Department of Mechanical Engineering, from 1.6 X 107 to 2.8 X 10°, inclined angle ¢ from —20 deg to 26 deg and the
National Chiao Tung University, Reynolds number Re below 102 covering the steady and time dependent flows. For
1001 Ta Hsueh Road, the buoyancy-opposing case, at a certain critical buoyancy-to-inertia ratio depending
Hsinchu, Taiwan, R.0.C. on the Re and ¢ both the experimental and numerical results clearly showed the
generation of the longitudinal vortex rolls in the entry half of the duct and a slender
reverse flow zone was induced near the exit end of the duct. At a higher buoyancy-
to-inertia ratio the stronger reverse flow moves upstream and is in a time periodic
snaking motion which is considered to result from the Kelvin-Helmholtz instability
associated with the two counter flow streams, namely, the downstream moving longitu-
dinal vortex rolls and the upstream moving reverse flow. Through the viscous shearing
effects the strong snaking reverse flow induces a number of eddies moving along it
and the longitudinal rolls are pushed towards the duct sides. This strong interaction
between the vortex flow and reverse flow leads to an earlier transition to turbulence.
A correlation equation was proposed for the penetration length of the reverse flow.
However, for buoyancy-assisting flow no reverse flow is induced and the longitudinal
vortex rolls prevail for the buoyancy-to-inertia ratio up to 2.8 X 10°. Significant
conjugated heat transfer effects were noted from the numerical results.

W. L. Lin

1 Introduction already reviewed in Huang and Lin (1994). In the following,
only the literature on the mixed convective flow in inclined
ducts is briefly reviewed.

Fukui et al. (1983) experimentally and numerically investi-
gated steady fully developed mixed convective flow in an in-
clined duct with the Rayleigh number Ra < 9300 and inclined
angle measured from the horizontal ¢ below 32.1 deg. In the
horizontal flow, the interaction between the vortices was found
to be rather small. However, in the inclined flow the neighboring
vortices tend to form a vortex pair with a single velocity peak.
Experimental data for the local and average Nusselt numbers
were provided by Morcos et al. (1986) and Maughan and In-
cropera (1987). Visualization of recirculating flow in steady
aiding and opposing mixed convection at low buoyancy in in-
clined ducts was recently conducted by Morton et al. (1989),
Lavine et al. (1989), and Ingham et al. (1990). The correspond-
ing numerical analysis was performed by Heggs et al. (1990),
including heat conduction in the wall. Koizumi and Hosokawa
(1993) experimentally demonstrated that a properly designed
unsteady mixed convective gas flow is suitable for CVD pro-
cesses. Recently, the present authors (Lin and Lin, 1996 ) exper-

Buoyancy-induced vortex flow and heat transfer in a mixed
convective flow through a heated duct are known to be relatively
sensitive to the duct orientation. In a bottom heated horizontal
rectangular duct the buoyancy is normal to the forced flow
direction and the longitudinal or transverse vortex rolls can
be induced at supercritical Grashof numbers depending on the
Reynolds number of the flow. When the duct is inclined from
the horizontal, the secondary vortex flow is expected to be
weaker due to the smaller normal buoyancy component and
the forced flow will be accelerated in the aiding situation and
decelerated in the opposing situation by the tangential buoyancy
component. Thus, the longitudinal and/or transverse rolls and
flow reversal can simultaneously exist in an inclined duct. At
high buoyancy, the resulting flow will be rather complex and
can undergo transition to a time-dependent state. These compli-
cated processes are often encountered in a low Reynolds number
flow. Detailed understanding of this buoyancy-induced vortex
flow structure is important in fundamental fluid mechanics, heat
transfer study, and in various technological processes such as
cooling of microelectronic equipment (Incropera, 1988), heat |
transfer in compact heat exchangers (Kays and London, 1984), %mentall}'l ghowed the vortex and reverse ﬂoyv 'structural changes
growth of single-crystal film through chemical vapor deposition i both aiding and opposing convection of air in a bottom heated
(CVD) (Evans and Greif, 1989) and many others. The literature inclined rectangular duct. The temporal flow oscillation at in-

on the mixed convection in horizontal rectangular ducts was Creasing buoyancy and the vortex flow near the duct exit were
also clearly manifested. But, the axial development of the whole

vortex and reverse flow structure in the entire duct remains

Contributed by the Heat Transfer Division for publication in the JOURNAL OF unexplored
Heat TRANSFER. Manuscript received by the Heat Transfer Division June 26, i . . . . ,
1996 revision received June 11, 1997; Keywords: Conjugate Heat Transfer; Flow ) To Complem?m our earl.ler study, combmed flow vxs.uahzq—
Instability; Mixed Convection. Associate Technical Editor: A. S. Lavine. tion and numerical simulation were carried out here to investi-
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Fig. 1 The schematic diagram of the experimental apparatus

gate the axial evolution of the buoyancy-driven secondary flow
structure in a mixed convective air flow through a bottom heated
rectangular duct slightly inclined from the horizontal. Attention
was focused on the effects of the inclined angle and Grashof
numbers on the characteristics of air flow in a rectangular duct
of a finite aspect ratio (A = 4). Specifically, the inclination
angle ¢ was varied from —20 deg to 26 deg.

2 Experimental Apparatus and Procedures

2.1 Experimental Apparatus. Figure 1 shows a sche-
matic view of the mixed convective experimental apparatus
established in our previous study (Lin and Lin, 1996) that is
also used here. The apparatus consists of three parts: wind tun-
nel, test section, and measuring probes (along with a data acqui-
sition system). The test section is a bottom heated rectangular
duct constructed of 9 mm thick plexiglass top and side walls
to facilitate flow visualization. The duct is rectangular, 30 mm
in height and 120 mm in width, providing an aspect ratio of A

= 4 and a total length of / = 800 mm. The apparatus is described
in detail in Lin and Lin (1996).

2.2 Data Reduction for Convective Heat Transfer. The
surface energy balance relating the total energy dissipated in
the thin heater plate acting as duct bottom due to the resistance
heating per unit surface area gy, to the heat fluxes associated
with the convection from the heated surface to the air flow

"

Geonv, radiation heat loss from the surface g1, and conduction
loss through the insulation gi is

(H

The convective heat flux was therefore determined by measur-
ing the total dissipated heat flux and applying appropriate corre-
lations for the nonconvective components. In view of the low
heat transfer in the low Reynolds number mixed convective
flow, the radiation loss ranges from 24 to 33 percent and the
conduction loss from 14 to 23 percent of the total flux in the
present experiment.

Uncertainties in the Grashof number and other parameters
were estimated according to the standard procedures proposed
by Kline and McClintock (1953). Our analysis indicated that
the combination of many measurements, together with the un-
certainties in the predicted quantities (radiation and conduction
losses), yields the spanwise average Grashof number uncertain-
ties ranging from 10 to 25 percent, which primarily reflects the
uncertainty in the convective heat flux. The estimated uncer-
tainty in the Reynolds number was 2 percent. Because of the
fluid property variations with the temperature, the Reynolds and
Grashof numbers vary with the axial distance. Although the
variations in the Reynolds number were small, the Grashof
number could vary by as much as 25 percent. For convenience,
experiments are identified according to the Reynolds and Gras-
hof numbers based on the inlet conditions and averaged convec-
tion heat flux.

"o o n ” "
qtot - qcnnv + de + qinsul~

3 Mathematic Model and Solution Method

3.1 Geometry. The mathematical model employed to
simulate the mixed convective air flow in a bottom heated in-
clined rectangular duct with finite thickness walls is shown in
Fig. 2, along with the chosen coordinate system. An isothermal
fully developed forced flow at temperature T, and averaged
speed wi, enters the duct at the far upstream of the heated

Nomenclature

A = aspect ratio, b/d qm

the total heat flux in the plate

v = kinematic viscosity

b, d = width and height of the duct g" = wall heat flux p = density
g = gravitational acceleration Rz = Reynolds number, ,.d/v ¢ = inclined angle measured from ho-
Gr = modified Grashof number, t, 7 = dimensional and dimen- rizontal
8BGeond* I k? sionless time, #/(d/w,,) Subscripts
h = local convection heat transfer T, 6 = dimensional and dimen- . .
coefficient sionless temperature, (7' — = of ambient quantities

k = thermal conductivity
!, L = dimensional and dimensionless
length of the heated plate, [/d
L, = penetration length
Nu = local Nusselt number, Ad/k
Pm, P = dimensional and dimensionless
dynamic pressures, p,/pWwh
Pr = Prandtl number, v/«
g eonv = local convective heat flux

q'msu = local conduction heat loss
through the insulation

g = local radiation heat loss from the
surface

cient
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Tin)/ (qudik)
u, v, w = velocity components in x, y,
z directions
Uu,v,w= dxmens19nless velocity com- s = of plexiglass plate quantities
ponents in X, Y, Z directions,
ulwi,, v/w,, and w/w,,
X, vy, z = Cartesian coordinates

B = thermal expansion coeffi-

& = thickness

Jfd = fully developed
in = values at the inlet of the test
section
lon = of Superlon insulator quantities

s-f = values from plexiglass plate to
fluid

A ‘ g w = of heated wall quantities
X, Y, Z = dimensionless Cartesian co- ¢ — yalues from heater plate to fluid
ordinates, x/d, y/d and z/d
a = thermal diffusivity Superscripts

— = average value
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The Physical Model of Numerical Simulation

Fig. 2 The physical system of the numerical model for a mixed convec-
tive air flow in a rectangular duct

section. Initially, the flow in the entire duct is isothermal at T;,.
At a certain instant of time, designated as time ¢ = 0, a uniform
volumetric heat source 4" is suddenly generated by the resis-
tance heating in the thin heater plate and is maintained at this
level thereafter. Meanwhile, the entire duct is thermally well
insulated by the Superlon insulator. Note that two thermally
well insulated sections of length L and L/2 are, respectively,
added to the upstream and downstream ends of the heated sec-
tion to facilitate the prescription of the in-flow and out-flow
boundary conditions in the present elliptic flow analysis (Huang
and Lin, 1994),

3.2 Governing Equations. In view of the thermal con-
ductivity of the plexiglass side and top walls (k, =~ 0.21 W/
m°C) is much higher than that of the air (k, ~ 0.0263 W/
m°C), heat conduction in the duct walls is expected to exert
profound influences on the air convection in the duct. Hence,
the conjugate heat transfer effects should be included in the
analysis. Basic nondimensional equations describing this un-
steady mixed convective flow of a Boussinesq fluid in a bottom
heated inclined rectangular duct driven by the interactions of
the convection in the duct and conduction in the duct walls are
outlined in the following subsections.

(a) Convection Equations for Flow in the Duct.
Continuity equation:
oU oV oW _
ox 0y 0Z
X-direction momentum equation:

U,y v, wil
or " Vex T or T Moz
op 1 [8U oW
—_— — + —— —_—
X " Relox? " ov?

(2)

8*u
+ —_—
8Z*

Y-direction momentum equation:
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8v BV . AV oV
AN IR A
or ox oy oz

P 1[82V 8*v

— r—— ._.._+_
gY Re| 9x* or*

g%
+
0z*

+ ﬁ%@-cos ¢ (4)

Z-direction momentum equation:

ow oW oW oW

— U=+ Vet W—

or v X v oY W oz
__op 1 W 9w 9w
8Z Re| 9x* 9Y?* HZ?

+R9ér§0-sin¢ (5)

Energy equation:

0 0000
or 15).¢ oY oz

1 9%
= — 4+
Re:Pr | 9X2

9%
aY?

29

Nondimensional variables used in the above equations are de-
fined as

X =x/d Y=yld Z=17ld

U= ulw, V = v/wy, W = w/w,

T = t/(dIWy,) P =pupws 8= (T~ T,/ (gud/k)
Gr = gBqlLd*lkv* Pr=vi/a Re = w,d/v

A =Dbld

where gy, is the wall heat flux considered to be equal to i,
which is determined by averaging the data from the experimen-
tal measurement, Eq. (1).

(b) Conduction Equations in the Solid Walls. Considering
that the thickness of the duct wall is much smaller than the
length and width of the duct, the conduction resistance across
the wall is neglected here to facilitate the computation. Thus
we have unsteady two-dimensional heat conduction equations
for the heater plate:

0%,
0Z*

B, an 0, .
or ~ \Pr+Re 0x*?
()6 e
ke / \ 6w/ L (0 + 8)/2d
() (&) (12

kyw / \ 6, oY

the plexiglass bottom wall:

o0, @, 0%,
o [ LB 2
or Pr-Re 6x*?

)} (7
w—f
2)- ()0
6z* k., b/ \ dinld

d 0w - 03 |
- (E)[(éw ¥ &)/MJ} ®)

the plexiglass right side wall:
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00, _(_aw \[ (2% 0%\ _(1)\(d)o6
dr  \Pr-Re ay*  9z? k. J\6, ) ax|._

the plexiglass left side wall:
% - —a"‘“ (820& + %) + _l_ (g) ﬁ
or Pr-Re ay*  9z? ki J\8;) X

kr]on
- — 10
() () (G )] o
and the plexiglass top wall:

o (e \[(08 08)(1)(4) 0
ot Pr-Re 8x* 0z? ki) \8;) OY |,_;

()G o
kr: 5.; 6lon/ d

Note that in writing the above equations, the outside surface of
the Superlon insulator is assumed to be at the ambient tempera-
ture, which is the same as the inlet temperature in the present
experiment. It is also noted that the thermal radiative transfer
between the heater plate and side walls is approximately treated
by considering the radiation loss in the energy balance for the
heater plate. Besides, the thermal diffusivity and conductivity
ratios and wall thickness are defined and assigned with the
values for the present system as

a,, = o/a ~ 0.00553, «a,, =a,/a ~ 0.187
kyy = kik =~ 7.622, k,, = k,/k ~ 57143,
kion = ki’ k = 10
dld, =~ 3333, dlb, ~ 120, bi./d =~ 5.

Due to the neglect of the thermal resistance across the thickness
of the walls, the solution for the above conduction equations
actually acts as the thermal boundary conditions for the flow
equations.

O

(c) Initial and Boundary Conditions. The imposed initial
and boundary conditions for the above governing equations are

atT=0,U=V=0=86,=6,=0

W=W,,,=<m';:1><n

+1

)[1 - ([2r - 11)"]

[ )]

where the initial velocity is assumed as fully developed with
the values of the constants m and n depending on the aspect
ratio A (Shah and London, 1978; Holmes and Vermeulen, 1968;
Natarajan and Lakshmanan, 1972).

At7>0,atZ=~L, U=V=0=0,=0,W=W, (13)
3L U _9V_ow 08 _ 6,
zZ =2 -0
ML= T ez ez ez wz (14)
a0
tZ=0and L, —2 = 1
a an 5z 0 (15)

at the fluid-wall interfaces,
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U=V=W=0,6=00r6=28,. (16)

3.3 Solution Method. In view of the nonlinearity in the
inertia terms, the basic equations were solved numerically. In
particular, the explicit finite-difference method was used to
solve the conduction equations in the solid walls. Meanwhile,
the explicit projection method (Peyret and Taylor, 1983) was
chosen to integrate the flow equations on a staggered grid sys-
tem. This fractional step (splitting) method consists of two
steps. First, a provisional value is explicitly computed for the
velocity field ignoring the pressure gradient. Then, the provi-
sional velocity field is corrected by including the pressure effect
and by enforcing the mass conservation. The details of the
solution procedures are available from our previous numerical
study (Huang and Lin, 1994).

Since only the low Reynolds number flow (Re = 102) is to
be simulated, a uniform grid is placed in the computational
domain with AX = A/I, AY = 1/J, and AZ = 2.5L/K where
I, J, and K are, respectively, the total numbers of nodes used
in X, Y, and Z directions. 1, J, and K are, respectively, chosen
as 61, 22, and 91, The stability of the scheme is limited by
the requirement that the Courant number be less than unity
(Anderson et al., 1984). To insure the numerical convergence
and enhance numerical accuracy, the Courant number is set
below 0.05 in the computation.

To verify the proposed numerical scheme, a series of stringent
program tests were conducted. First, the predicted results for
the flow without considering the wall conduction effects were
in qualitative agreement with the results in our experimental
results and literature, as was clearly illustrated in our previous
numerical study (Huang and Lin, 1994; Lin et al., 1996) for
the horizontal duct flow. Then, a space and time grid-indepen-
dence test and a test of the downstream insulated section length
for the inclined duct flow were carried out. Results from such
tests for the flow and temperature fields computed by the 61 X
22 X 91 space grid with the downstream insulated section length
L/2, by the 61 X 22 X 137 and 81 X 30 x 121 grids with
the downstream insulated section length L, and with the time
intervals selected at Courant number = 0.05 show good agree-
ment. More comparisons will be made later between the present
numerical simulation and experimental measurement. Through
these program tests, the adopted solution procedures are consid-
ered to be suitable for the present study. Finally, it should be
mentioned that the computations were performed on the IBM
580 workstations. The CPU times for these unsteady fully three-
dimensional cases were about 6—12 days with a 50 percent
share of CPU. Due to the limited availability of the computa-
tional facilities, grids much finer than those used above were
not tested.

4 Results and Discussion

In the following section of the paper, selected results from
the present combined experimental and numerical investigation
will be presented, mainly to illustrate the axial development of
the complex flow structures containing the buoyancy induced
vortex flow and/or reverse flow for various Grashof numbers
with ¢ varied from —20 deg to 26 deg. Then the conjugated
heat transfer effects deduced from the numerical simulation are
manifested. A similar study for the horizontal duct (¢ = 0 deg)
was recently reported by Lin et al. (1996).

4.1 Axial Evolution of Vortex and Reverse Flow. In the
first situation to be discussed, the air flows downwards in the
duct with the lower plate heated so that the duct inlet is at a
higher elevation over the exit end, resulting in an opposing
mixed convection (¢ < 0 deg). At a low buoyancy-to-inertia
ratio (Gr/Re?), steady vortex flow prevails after the transient
has elapsed when the Grashof number is above the critical value
for the onset of secondary flow. To exemplify the axial vortex
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Fig. 3 Comparisons of experimental photos and computed results at =
= 1200 for air flow for Re = 35, Gr/Re? = 9.8, and ¢ = —20 deg for (a)
top view and (b} cross section view

flow development in this opposing mixed convection, Fig. 3
shows the photos taken from the top and end views of the steady
vortex flow for Re = 35 and Gr/Re? = 9.8 (Gr = 1.2 X 10%)
for ¢ = —20 deg. For clear comparison, the corresponding
planform of the velocity field predicted from the conjugated
heat transfer analysis is also shown in Fig. 3. Note that the
vortex flow development visualized from the experiment is in
qualitative agreement with that from the numerical simulation.
The top view flow photo shows that in the immediate entry of
the heated section, the smoke spreads fairly uniformly on the
heated plate for z < 0.2 m suggesting the dominant laminar
two-dimensional forced convection flow there. Then at z = 0.2
m, two spanwisely symmetric tracer lines with fringes start to
appear near the duct sides (top view) and we have the onset of
one pair of longitudinal vortices there. This vortex pair is clearly
seen from the end view at z = 0.3 m (Z =~ 10). But near z =
0.2 m (Z ~ 6.67) the vortex flow is still rather weak and does
not touch the upper plate. When the flow moves downstream
to the station z = 0.5 m (Z ~ 16.67), another pair of vortices
form in the core region adjacent to the first pair, as evident
from the top view. The associated isotherms from the numerical
simulation not shown here suggest that these newly formed
vortex rolls are driven by the thermals rising from the central
portion of the heated plate. Thus, beyond z = 0.5 m (Z =~ 16.67)
we have two pairs of longitudinal vortex rolls in the duct, which
are also symmetric with respect to the vertical central plane at
X = 2. Proceeding downstream, the rolls grow slowly in size
and strength, as evident from the top view flow photos and
numerical results. This in turn squeezes the rolls near the side
walls to cause them to become smaller. In summary, our results
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suggest that the axial evolution of the vortex flow of the oppos-
ing mixed convection at low buoyancy is mainly characterized
by the generation of symmetric vortex rolls as the flow moves
downstream. No reverse flow was observed at this low Gr/Re?.
Additional results for a higher Gr/Re? or lower ¢ indicates that
the onset of vortices moves upstream and the vortex intensity
is stronger.

Next, the axial development of the opposing mixed convec-
tion flow at the buoyancy-to-inertia ratio high enough to reverse
the forced flow in the downstream and to cause the flow to
become time periodic is examined (Lin and Lin, 1996). Typical
results for the snapshots of the complex flow from the top and
side views at large 7 for Re = 35, ¢ = —20 deg, and Gr/Re?
= 61.2 (Gr = 7.5 X 10*) are given in Fig. 4. At this higher
buoyancy one can observe the earlier onset of the longitudinal
vortices at z =~ 0.1 m (Z = 3.33) and the vortices are stronger
and somewhat sinuous. At this higher opposing buoyancy a
slender zone of the reverse flow can be seen near the central
vertical plane at X = 2 for z > 0.25 m. The flow reversal starts
from the exit end of the heated section and extends towards the
duct inlet. It is interesting to observe the cross section of the
narrow reverse flow zone varying nearly periodically in the
axial direction resulting in the weak, slightly meandering motion
of the neighboring longitudinal vortex rolls. This interaction
of the upstream moving reverse flow and downstream moving
longitudinal vortices causes the flow to become slightly asym-
metric and time periodic. The side view of the flow shown in

(a) Top View (Y=1/2) (b) Side View (X=2)
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Fig. 4 Comparisons of experimental photos and computed resuits at 7
= 1500 for air flow for Re = 35, Gr/Re? = 61.2, and ¢ = 20 deg for (a)
top view and (b) side view
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Fig. 5 The instantaneous flow photo and schematically sketched cross
plane vortex flow for Re = 35, Gr/Re? = 61.2, and ¢» = ~20 deg at z =
0.5morZ =16.7

Fig. 4(b) indicates that the reverse flow is much stronger in
the downstream end of the duct. Besides, the slender reverse
flow zone also contains weak cross plane recirculation. Thus in
the duct core one observes an upstream moving spiral flow.
Note that the tilted S-shape smoke tracers in the side view flow
photo in Fig. 4(b) are the consequence of this reverse vortex
flow. An overview of the experimental flow photos indicates
that at this higher buoyancy, aside from the slender reverse flow
zone, one pair of forward moving longitudinal vortex rolls have
been generated near the side walls in a short distance after the
flow entering the heated section (z =~ 0.1 m or Z =~ 3.33).
When the flow moves downstream to z ~ 0.2 m (Z =~ 6.67),
another nearly symmetric pair of forward moving longitudinal
vortex rolls are induced by the thermals rising from the central
portion of the heated plate for z = 0.2 m. Further downstream,
the rolls in the duct core grow and extend to occupy nearly the
entire top half of the cross section, causing the rolls near the
duct sides to shrink and to stay near the lower corners of the
duct. Thus we have two large rolls on top of the two small rolls
in this portion of the duct (0.4 m = z = 0.7 m). This interesting
flow structure is illustrated in Fig. 5 by the cross plane vortex
flow in the cross section z = 0.5 m, which is also slightly
asymmetric. Note that the cross plane vortex flow is the second-
ary flow in the plane normal to the main forced flow direction.
Beyond z = 0.7 m (Z = 23.3) the smaller rolls disappear and
we have two-roll structure. It should be mentioned that the
numerically predicted flow is spanwisely symmetric. This is
due to the absence of the random disturbances in solving the
flow equations, except the relatively small errors inherent in the
numerical discretization and computation. While in the experi-
ment the turbulence level of the inlet stream is about 0.7 percent.

When the buoyancy-to-inertia ratio is further increased to
122.5, the reverse flow is slightly unstable and can penetrate to
the more upstream region, as shown in Fig. 6. Note that the
reverse flow moves sinuously upstream. Moreover, one can
observe the vortices recirculating along an elongated S-shape
interface, which is considered to result from the strong viscous
shearing of the strong sinuous reverse flow. This generation of
the vortices is very similar to that observed in the interface
between two counter flow streams and is due to the Kelvin
Helmholtz stability. In addition, the tip of the reverse flow zone
at the duct inlet is found to be unsteady and moves up and
down both axially and normally. It is further noted that the
sinuous interface between the reverse flow and vortices around
it is not steady but instead grows and collapses in a periodic
manner. The whole reverse flow was found to move slightly
upstream and downstream with a period of approximately 25
seconds. In summary, the driven flow at this high buoyancy is
characterized by the strong snaking reverse flow in the duct
core, a forward moving longitudinal vortex roll near each side
wall and a number of irregular vortices in-between. :

A similar buoyancy-induced secondary flow structure is ob-
served when the buoyancy is further raised. Results for a typical
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case with Re = 35, Gr/Re* = 155.1 (Gr = 1.9 X 10°) and ¢
= —20° are given in Fig. 7. Note that at this higher buoyancy
the snaking motion of the reverse flow is stronger and is more
sinuous. Besides, the reverse flow zone is slighter larger in
cross section and penetrates slightly more upstream. The vortex
intensity of the vortices moving around the slender reverse flow
zone is higher. The experimental and numerical results all indi-
cate that the motion of these vortices is rather unstable and
irregular. The flow is highly asymmetric. Obviously, some deli-
cate vortical motion of the eddies is not predicted by the numeri-
cal simulation. Note also that at this higher buoyancy the flow
in the downstream actually becomes turbulent.

The distributions of the local heat transfer coefficient on the
bottom heated plate are important in thermal design. Figure 8
presents the computed local Nusselt number distributions, de-
fined as Nu = hd/k = (d/k)-[qw/(T, — T}y)] = 1/8,,, for Gr/
Re” = 9.8, 61.2, 122.5, and 155.1 for ¢ = —20 deg and Re =
35 at T, respectively equal to 1200, 1500, 1500, and 1800.
These distributions clearly reflect the secondary flow structures
discussed above for these cases. Specifically, in Fig. 8(a) we
can see the heat transfer enhancement by the buoyancy induced
longitudinal vortex flow and the dominated four roll structure
in the downstream half of the duct. Since the buoyancy driven
vortex flow is weak at low Gr/Re?, only small heat transfer
enhancement is noted at Gr/Re? = 9.8. At a higher buoyancy
with Gr/Re? = 61.2, the results in Fig. 8(b) distinctly show
the axial change in the flow structure from the four rolls to two
rolls at z/d ~ 16. At even higher buoyancies, the distributions
in Figs. 8 (¢) and (d) are clearly in accordance with the intensive
vortical motion of the eddies generated by the snaking reverse
flow.

The penetration length of the reverse flow defined as the
distance from the upstream tip of the reverse flow zone to its
tail in the duct exit is relatively important in the study of the
high buoyancy opposing mixed convection and is also experi-
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Fig. 6 Comparisons of (a) schematically sketched flow pattern, (b) ex-
perimental photos, and (¢) computed results at 7 = 1500 for air flow for
Re = 35, Gr/Re? = 122.5 and ¢ = —20 deg at a selected top view
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(c) Cross Sectional View
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Fig. 7 Comparisons of experimental photos and computed results at + = 1800 for air flow for Re = 35, Gr/Re?
= 156.1, and ¢ = —~20 deg for (a) top view, (b) side view, and {c) cross section view

mentally measured. Based on the present data, a dimensionless  experimental data. It was found that the equation is applicable
penetration length scaled with the duct height is correlated as  for 5 X 10* = Gr = 2 X 10°, 20 < Re = 102, and —20 deg

G G = ¢ = —5 deg.
L, =27%107 < ! > ~ 12 % 10-2 <_£> When the air flows upwards in the duct (¢ > 0 deg) for the
Re? Re? aiding mixed convection, the normal buoyancy component is
prone to induce longitudinal vortices. Meanwhile, the parallel
+107 (1~ 2sin¢) (17) component will accelerate the flow in the axial direction. Figure
9 shows the instantaneous flow pictures taken at large 7 at four
This correlation is within 5 percent of the rms error against the  selected cross sections for the Reynolds number fixed at 35,
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Fig. 8 The predicted local Nusselt number distributions on the heated
bottom plate for Re = 35 and ¢ = —20 deg for (a) Gr/Re? = 9.8, (b) Gr/
Re? = 61.2, (c) Gr/Re? = 122.5, and (d) Gr/Re?* = 155.1 at large 7

Grashof number at 2.8 X 10° (Gr/Re? = 228.6), and ¢ at 26
deg. It is of interest to note from the results that one pair of
weak longitudinal vortex rolls with the vortex flow ascending
along the side walls are induced in the entry region for z = 0.2
m and downstream another pair of longitudinal rolls are induced
but the rolls near the duct sides change the direction of the
recirculation with the vortex flow descending near the side

walls. Besides, the vortices were found to swing left and right
in the spanwise direction. However, for the case of buoyancy-
assisted flow, no reverse flow is observed within the range of
the buoyancy parameter studied. The numerical predicted vortex
flow pattern is found to be in good agreement with that observed
in the experiment. Additionally, results not given here indicated
that the vortex flow is stronger for higher Gr/Re? and smaller
¢ with the earlier onset of the vortices.

4.2 TImportance of Conjugated Heat Transfer. Finally,
the importance of the interactions between the convection in
the flow and conduction in the solid walls on the vortex and
reverse flow structure is illustrated by comparing the numerical
results for those cases including and excluding the conjugated
effects. Figure 10 shows this comparison for the case with Re
= 35, Gr/Re? = 61.2, and ¢ = —20 deg. These results indicate
that there are significant differences in the thermal and flow
structures predicted from the two different models. In particular,
the nonconjugated analysis (Fig. 10(b)) gives larger vortex
rolls near the side walls, and they circulate upwards along the
side walls in the entry half of the duct. In addition, because the
plate temperature results in the bottom corners in the nonconju-
gated analysis are higher than in other portions of the duct, the
reverse flow is induced near the side walls in the downstream.
This does not agree with the experimental observation. These
unrealistic outcomes are mainly caused by the neglect of the
conduction in the plexiglass side walls. Including the side wall
conduction, the conjugated analysis predicts the stronger and
larger vortex rolls in the duct core and a reverse flow generated
near the central vertical plane at X = 2, as already shown in
Fig. 4(a). Besides, the vortex pair always circulates downwards
near the duct sides.

The results from the present conjugated heat transfer analysis
clearly manifest the importance of the conduction in the solid
walls in affecting the buoyancy-induced vortex and reverse flow
structure in the air flow. This is simply due to the thermal
conductivity of air being much smaller than that of the solid
walls.

5 Concluding Remarks

The present combined experimental observation and conju-
gated heat transfer analysis for the mixed convective air flow
through a rectangular duct illustrated the generation of the vor-
tex rolls in the entry region of the duct and the existence of the
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Fig. 9 (a) Experimental photos and (b) computed results at = = 1500 for air flow for Re = 35, Gr/Re? = 228.6,
and ¢ = 26 deg at selected cross sections
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Fig. 10 Comparisons of the cross plane secondary flow from (a) conjugated analysis and (b) nonconjugated analysis for
Re = 35, Gr/Re? = 61.2, and ¢ = —20 deg at selected cross sections

slender reverse flow zone in the duct core if the opposing buoy-
ancy force is high enough. At a higher buoyancy, the counter
flow streams resulting from the downstream moving longitudi-
nal rolls and the upstream moving reverse flow induce an un-
steady snaking motion of the reverse flow, which in turn induces
a number of eddies recirculating in the major portion of the duct.
These experimentally observed flow structures are in qualitative
agreement with the conjugated heat transfer analysis. Moreover,
the conjugation of the conduction in the solid walls and the
convection in the flow was shown to be rather significant in
influencing the flow structure of the air flow and can not be
ignored in the analysis.

It should be noted that in application, such as the growth of
thin solid film from the chemical vapor deposition processes,
the vortex flow should be stabilized and even eliminated to
obtain a high quality film. Simple methods to stabilize and
eliminate the vortex flow need to be investigated in the future.
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This paper documents the geometric optimization of an assembly of staggered vertical
plates that are installed in a fixed volume. The heat transfer is by laminar natural

convection. The objective is to maximize the overall thermal conductance between
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the assembly of plates and the surrounding fluid. The geometric parameters that vary
are the horizontal spacing between adjacent columns of plates, the number of plates
mounted in each vertical column, the plate dimensions, and the stagger between
columns. The optimization is performed numerically and experimentally in the range

Pr = 0.72 and 10° = Ra, = 10° where Ray is the Rayleigh number based on the
vertical dimension of the assembly (L ). The results for the optimal horizontal spacing
are correlated using formulas derived from the theory of the intersection of asymptotes

(Bejan, 1984, 1995 ).

1 Introduction

A recent trend in heat transfer research is the simultaneous
pursuit of fundamental results and optimization results that may
have general applicability in design. This combination of funda-
mentals and design optimization is evident in the research on
techniques for cooling electronics. The work is not limited to
measuring or predicting the heat transfer performance of a given
technique. An integral component of the work is the design
aspect, for example, the optimization of the way in which the
technique is implemented in a certain class of applications.

In the natural convection cooling of electronic components,
it was found that the components can be arranged in an optimal
way in the given volume such that the hot-spot temperature is
minimal. This geometric-optimization subfield began with the
study of natural convection in a space filled with vertical equi-
distant plates. Bejan (1984) and Bar-Cohen and Rohsenow
(1984) showed that the plate-to-plate spacing or the number
of plates installed in the volume can be selected optimally.
Subsequent studies on stacks of vertical plates have established
the spacing optimization as a fundamental feature of thermal
design in the cooling of electronics (Peterson and Ortega, 1990;
Anand et al., 1992; Kim and Lee, 1996). Similar geometric
optima have been developed for forced convection cooling (e.g.,
Knight et al., 1991; Weisberg et al., 1992; Kim and Anand,
1994a, b).

The objective of the work reported in this paper is to apply
the geometric optimization method to another important con-
figuration, i.e., vertical plates (in-line or staggered) installed
in a given volume. This configuration is considerably more
complicated than the stacks of vertical plates that have been
optimized until now. Additional geometric parameters are the
number of plates installed in each column, the plate dimensions,
and the relative position of adjacent columns (the stagger), e.g.,
Fig. 1. These geometric complications raise the question of
which length scale of the assembly governs the optimal spacing
between adjacent columns, the plate height or the height of the
assembly? Furthermore, the assembly of staggered plates is a
configuration with applications not only in the cooling of elec-
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tronics, but also in heat exchangers subjected to volume con-
straints.

The geometric-optimization steps of the present work are
made on the ground covered already by a significant body of
research dedicated to the heat transfer fundamentals of stag-
gered plates in vertical natural convection (e.g., Prakash and
Sparrow, 1980; Sparrow and Faghri, 1980; Guglielmini et al.,
1987; Tanda, 1993, 1995). Relative to the existing work, in the
present paper we focus on the design optimization problem in
a global sense, by maximizing the overall thermal conductance
between the given volume (assembly of plates) and the sur-
rounding fluid. We do this by adjusting little by little the geo-
metric features of the assembly, so that we may compare the
performances of a large number of similar configurations. In
order to execute this voluminous work systematically and effi-
ciently, we perform the optimization numerically and experi-
mentally. The purpose of the numerical work is to generate a
large volume of optimal-geometry information, which will be
correlated using theory based formulas in the concluding section
of the paper. The function of the experimental part is to demon-
strate physically the existence of an opportunity to optimize the
geometry of the assembly of plates and to show that the numeri-
cal optimal-spacing results can be used with confidence in the
sizing of actual devices.

2 Geometric and Operational Parameters

The geometric parameters of the space filled with staggered
parallel plates are defined in Fig. 1. The total volume occupied
by this ensemble is fixed; it has the length L in the direction of
gravity, the width H in the horizontal direction perpendicular
to the plates, and breadth B in the direction perpendicular to
the plane of Fig. 1. The plates are identical: each has a swept
length b, thickness ¢, and breadth B.

The geometric arrangement of the plates has the following
four degrees of freedom: the spacing W between two adjacent
rows, the number of plates mounted in one row of length L,
the plate height b, and the stagger parameter £ defined in Fig.
1. The spacing W and plate dimension & can be nondimension-
alized as

. W

Nb
A==

L L ()

where A is dimensionless and proportional to the heat transfer
area that comes in contact with the elemental channel indicated
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Fig. 1 The geometric parameters of a volume filled with staggered verti-
cal plates

by the dashed lines in Fig. 1. In the A definition, N is the number
of plates that are wetted by the flow through a single elemental
channel (e.g., N = 4 in Fig. 1). According to this definition, A
= 2 represents the limit where the plate edges touch. The stagger
parameter is defined as

4= B
ﬂl‘ﬂﬂx
where maximal stagger corresponds to 8 =1, and Buy = (L
— b)/(N — 1). The Rayleigh number is defined based on the
height of the volume (L) and the difference between the plate
temperature 7, (assumed the same for all the plates) and the
ambient temperature, 7w,

_ 88T, - THL’
av '

(2)

RaL (3)

The geometry of the assembly mounted in the volume L X
H X B can be changed by varying W, A, N, or §, or a combina-

Nomenclature

tion of these parameters. We are interested in the geometric
arrangement that maximizes the overall thermal conductance
between the plates and the quiescent surrounding fluid. Since the
overall dimensions are fixed, to maximize the overall thermal
conductance means to maximize the ratio ¢/[W (T, — T..)] of
the elemental channel. A dimensionless alternative to this ratio,
which is suitable for both numerical and experimental investiga-
tions described next, is

— 4
W(T, — T.)kB/L )

g=
where ¢ is the heat transfer rate from a single elemental channel
(Fig. 1). The total heat transfer rate from the entire assembly
is Q = gH/W. Therefore, to maximize Q when the overall
volume is fixed (LHB) is equivalent to maximizing §.

3 Numerical Method

The numerical simulations were developed in two steps. In
the first we set up and tested a robust and reliable solver based
on a Galerkin finite element method (FIDAP, 1993). In the
second we compared and validated the finite-element solutions
against our own finite element code. We assumed that there
are enough elemental channels in the bundle (H > W) such
that the flow through a single channel is representative of the
flow through the complete bundle, Fig. . Consequently, our
computational domain is two-dimensional and is represented
by one elemental channel (L X W) fitted with an upstream
section (L, X W) and a downstream section (L, X W), as
shown in Fig. 2. The lengths L, and L, were chosen based on
accuracy tests that are described later in this section. All the
simulations were performed for air (Pr = 0.72). Four Ra,
values were used (10%, 10%, 10%, and 5 x 10%). In all the
cases the flow is laminar because Ra, < 10° Pr, while Ra, ~
10° Pr would mark the transition to turbulent boundary layer
flow. The evidence that the streamlines are steady, nearly
straight, and vertical when Ra, < 10° is voluminous, and can
be found in the literature reviewed in Bejan and Lage (1990).
In our case, the Ra, < 107 criterion is even more conservative
because what counts in this criterion is the Rayleigh number
(r) based on the height of a single plate and the temperature
difference felt by that plate (note that » < Ra,; in other words,
the criterion is < 107).

The steady-state conservation equations for mass, momen-
tum, and energy were simplified by assuming nearly constant
properties and using the Oberbeck-Boussinesq approximation
in the buoyancy term for the vertical momentum equation,

A = dimensionless contact area, Eq. (1)
b = plate swept length, m (Fig. 1)
B = plate length (bundle width), m
D = spacing between L-long parallel
plates
H = bundle thickness, m (Fig. 1)
k = fluid thermal conductivity
L = bundle flow length, m (Fig. 1)
L, = downstream length, m
L, = upstream length, m
N = number of plate surfaces facing the w
elemental channel (Fig. 1)
p = pressure, N/m?
g = heat transfer rate per elemental
channel, W

bundle

Journal of Heat Transfer

g = dimensionless overall thermal con-
ductance, Eq. (4)
Q = total heat transfer rate from the

R = residual vector
Ra, = Rayleigh number, Eq. (3)
¢t = plate thickness, m (Fig. 1)
T = temperature, K
T. = plate temperature, K
T, = average surface temperature, K
= ambient temperature, K
u = solution vector, Eq. (11)
u,v = velocity components, m/s
W = channel spacing, m (Fig. 1)

W = dimensionless channel spacing,
Eq. (1)
X, y = cartesian coordinates, m
a = thermal diffusivity, m?*/s
[ = stagger parameter, m (Fig. 1)
B = coefficient of volumetric ther-
mal expansion, K™!
Pmax = maximum stagger parameter
# = dimensionless temperature, Eq.
(10)
N = kinematic viscosity, m?*/s
( Jmax = maximal
(' Jop = Optimal
() = dimensionless variables, Eqs.

(9)-(10)
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Fig. 2 The computational domain and boundary conditions for the case A = 0.8, N = 4, and B =1, and the Ra; effect on the
flow and temperature field when A = 0.9, N = 4, W = 0.16, and t/b = 0.1

%+%=o (5)
M%+U%=—%%+VV2L¢ (6)
u-g%+vg—;}=—%g—5+z/v2v+gﬂ(T—Tm) (7)
u%—kv-gZ:aVZT (8)

where V? = 8%/0°x + 0?/0%y. The origin of the cartesian
frame (x, y), sketched in Fig. 2, is placed in the bottom left
corner of the computational domain. The horizontal and vertical
velocity components are # and v. The nondimensionalization of
the governing equations is achieved by introducing the variables

NV €75 ) RN (u, v)
R IS ——— , - — 9
(£, %) 3 (#, ©) (@/L) Ral” 9
T-T. 4 pL?
g = = . 10
T, - T. e Ra}’? (10)

The following flow boundary conditions are indicated in Fig.
2: zero normal stress and vertical flow (u = 0) at the inlet to
the computational domain (y = 0); free slip and no penetration
at the fluid interfaces (planes of symmetry) between two con-
secutive plates; no slip and no penetration at the plate surfaces;
and free slip and no penetration on the vertical boundaries of
the inlet section. As we discovered in an earlier study (Bejan
et al., 1995), we avoided an artificial upward acceleration of
the fluid by specifying a zero-stress condition along the side
opposite to the topmost plate. By specifying 04/0% = 0 over
this portion of the boundary, we allow fluid to flow horizontally
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Downloaded 11 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

through the boundary (Fig. 2) and cancel the unrealistic vertical
acceleration (chimney ) effect that would have been created had
we imposed no-slip on that surface. The temperature boundary
conditions were T = T, on the plate surfaces, and T = T, at
the bottom end (y = 0) of the computational domain. The
remaining portions of the domain were modeled as adiabatic.

Equations (5)-(8) were nondimensionalized, cf. Egs. (9)
and (10), and then solved on a Cray T90. Quadrilateral ele-
ments with biquadratic interpolation functions were used. The
explicit appearance of the pressure in the momentum equations
was eliminated through the penalty function method. In all the
simulations the compressibility parameter was 107%. The non-
linear equations resulting from the Galerkin finite element dis-
cretization were solved using successive substitution followed
by a quasi-Newton method. The following convergence criteria
were used,

o — ub)
CH

IRu"){|

= 0.001
Rol

= (0.001 and (11)

where R(u) is the residual vector, and u is the complete solution
vector. The norm|| - || is an Euclidian norm. The grid was nonuni-
form in both £ and y-directions. The grid was double graded in
the #-direction so as to put more nodes near the plate surfaces to
capture the boundary layers. The grid varied from one geometric
configuration to the next. The nodes in the f-direction were
between 27 and 39. In the y-direction the nodal points varied
from 121 to 145. Tests showed that the results were essentially
insensitive to further grid doubling in both £ and § (e.g., the
changes in the channel heat transfer rate were less than 1 per-
cent). Another set of accuracy tests showed that when L,/L =
0.44 and L,/L = 0.5, the channel heat transfer rate varied less
than 0.3 percent after the doubling of the upstream and down-
stream lengths (L,, L;). The appropriateness of these lengths
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Table 1 Comparison between the results generated with the FIDAP
code and with our own penalty-finite-element code, using a uniform
mesh with 100 nodes in the x-direction and 30 nodes in the y-direction

(A=1,N=4,W=02,1t/b - 0).

Rap q

FIDAP our code
103 16.134 15.192
104 30.528 28.942
105 52.238 50.187

was verified further through streamline and isotherm visualiza-
tions, as shown for three cases in Fig. 2.

The accuracy of the numerical method was further verified
by placing a single plate of length L = 2b (case A = 2) in
the computational domain and calculating the overall Nusselt
number Nu,, for Ra; = 10° and 10*. These results were com-
pared with two well known results. One is the similarity solution
for boundary layer natural convection on a vertical plate with
uniform temperature (e.g., Bejan, 1993)

Nu, = 0.52 Ra}/’*. (12)
The other is the experimental correlation (Churchill and Chu,
1975)

Nu, = 0.68 + 0.52 Ra}'*. (13)
which is particularly good in the low Ra,, limit where the bound-
ary layer approximation loses its accuracy. For Ra, = 107 our
numerical method yielded Nu, = 3.256, while Eq. (13) predicts
Nu, = 3.586 and Eq. (12) predicts Nu, = 2.91. Our numerical
results falls within 11 percent between these two predictions.
We repeated this comparison for Ra;, = 10* and found the same
type of agreement.

The numerical results developed using FIDAP were validated
against our own penalty finite element, which we constructed
based on the formulation described by Reddy and Gartling
(1994). In our code the penalty terms were evaluated using a
reduced integration (1 point Gauss quadrature for the penalty
terms and 2 X 2 Gauss quadrature to evaluate the integrals of
the nonpenalty terms). The upwinding scheme described by
Hughes (1978) was implemented to ensure convergence and to
prevent oscillations when the Rayleigh number was greater than
10*. The elements used were four-noded quadrilaterals (bilinear
interpolation functions). In addition we used a penalty parame-
ter equal to 107® to be consistent with the FIDAP solution, The
finite element equations associated with Eqs. (5)—(8) were
soived using a Newton-Raphson scheme. The convergence cri-
teria of our code are based on the norm of the energy in the
current iteration,

= 107"

(n) (n+1)
’R Ad (14)

ROAQD

where R is the residual vector at the iteration n, and Ad is the
displacement increment vector.

In order to compare the results obtained using the two numeri-
cal schemes, we selected the simple case A = |, N =4, t/b =
0, and W = 0.2. We discretized the computational domain using
a uniform mesh with 100 X 30 nodes and generated results for
three different Rayleigh numbers (10%, 10%, and 10°). The
FIDAP results shown in Table 1 were obtained using bilinear
interpolation functions in order to make a consistent comparison
between FIDAP and our code. Table 1 shows that the agreement
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between the two methods was always within 6 percent. The
fact that our finite element results underestimate the FIDAP
results is due to the way in which we calculated the heat fluxes
from the plates. In our post-processing phase we calculated the
heat fluxes at the Gaussian points, which are not located exactly
on the plate surface. In spite of this inconsistency, the nodal
solutions for temperature and velocities agree within 1 percent
in all the cases tested.

4 Numerical Results

In this section we report the numerical results for the optimal
spacing W between two adjacent rows and the optimal dimen-
sionless heat transfer area A. Next, we document systematically
the effect of the plate thickness, the effect of the number of
plates N in a single channel, and the effect of changing the
geometry of the array from perfectly staggered plates to aligned
plates.

Figure 3 illustrates the voluminous character of the numerical
work and the design optimization objective that guided this
work. The results displayed in Fig. 3 correspond only to the
case (N = 4, t/b = 0.1) and show the effect of varying the
horizontal spacing W, the Rayleigh number, and the contact
area per elemental channel (A). The main conclusion is that §
has a distinct maximum with respect to W. The optimal plate-
to-plate spacing (W,, ) decreases as the Rayleigh number in-
creases, and increases as A increases. These trends are clearer
in Fig. 4, which summarizes the W,y values deduced from the
series of numerical runs displayed in Fig. 3.

The maximized thermal conductance values that correspond
to Fig. 4 are reported in Fig. 5. The §,,x values decrease as A
increases while the number of plates N is held fixed. This behav-
ior is due to the thickening of the boundary layers, which occurs
when the plate height b increases. As expected, the maximized
thermal conductance increases with the Rayleigh number. These
trends are confirmed by experimental measurements (section
5) and correlated in the concluding section of this paper.

The effect of varying the thickness of the plates is docu-
mented in Fig. 6. In the range 0 = /b = 0.1, the relative
thickness /b does not change significantly the optimal spacing
and corresponding maximal thermal conductance. The effect of
t/b is felt only on the small-spacings side (W < Wnpl) of the
thermal conductance maximum.

In the results exhibited in Figs. 3—6, the number of plates in
contact with one elemental channel was fixed at N = 4. The
effect of varying N while holding A constant is illustrated in
Fig. 7. Note that to increase N while A is fixed means to use
more numerous plates that are shorter, The effect of N on the
optimal spacing is not negligible, especially when N is small.
When N is greater than 10, the use of more plates to install the
same area (A) in the elemental channel has practically no effect
on W, This conclusion is strengthened by the corresponding
behavior of g,,,: the number of plates per elemental channel
does not change §n,x when N = 4. There is a slight advantage
— a 15 percent increase in §n.,—to installing the smallest
number of plates in the channel (N = 2).

The stagger parameter S has a perceptible effect on the max-
imized thermal conductance, as illustrated in Fig. 8. The best
arrangement is the one with no stagger (plates in line horizon-
tally); the G, value for plates in line (8 = 0) exceeds by 9
percent the §... value of perfectly staggered plates (8 = 1).
The effect of 4 on the optimal spacing of the elemental channel
is negligible.

5 Experimental Results

For a more definitive demonstration of the geometric optimi-
zation principle, we conducted a series of experiments in which
we varied the plate-to-plate spacing W. The objective in these
experiments was to show that W can be selected such that the
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- . . s - a
configurations that were simulated numerically; this would have o 8_’?5
been impossible in view of the size constraints (e.g., number 1 L 1
of plates and elemental channels ) of the experimental apparatus. o.01 01 W 0.5

In spite of these difficulties an additional objective of the experi-
mental work was to show that the geometric optimization results

. A . : - Fig. 8 The effect of the plate thickness on the overall thermal conduc-
developed numerically in section 4 are adequate for engineering

tance and the optimal channel spacing
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design purposes, e.g., for selecting the optimal spacing between
vertical plates in actual applications.

The main features of the experimental apparatus are illus-
trated in Fig. 9. The volume occupied by the plates assembly
was the same in all the experiments. Another feature held con-
stant in all the experiments was the heat transfer area per chan-
nel, A = 1.2. We varied the total number of plates and their
arrangement in the assembly. We tested assemblies with 4, 6, 8,
10, and 12 plates, however, in all the assemblies each elemental
channel had N = 4, The stagger parameter was maximum ( B )
in all the experiments. In summary, the geometries tested experi-
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mentally had only one degree of freedom, the channel spacing

The right part of Fig. 9 shows the experimental assembly in
which we used six plates. Each plate was a thin thermofoil
heater (MINCO HR5334R17.2L12A, resistance 17.2€1) which
was sandwiched between two aluminum strips with a thickness
of 0.3 mm. The heater and the strips were bonded tightly using
a highly conductive cement (#6 RTV). The plates were heated
identically: they were connected in parallel and powered by a
variable autotransformer that produced voltages between 0 and
140 volts.

Each assembly was tested inside an enclosure with the dimen-
sions 304 mm X 304 mm X 914 mm. The internal and external
surfaces of the enclosure were covered with aluminum foil to
minimize the effect of thermal radiation. The top and bottom
ends of the enclosure were left open in order to prevent the
stagnation and gradual warming of the trapped air.

The temperatures were measured using four precision therm-
istors ('YSI44004, resistance 22502 at 25°C), which were cali-
brated in the laboratory. The bias limit of our temperature mea-
surements was £0.001 K. It was deduced from the resistance
versus temperature response measured during the calibration of
each thermistor [dT/dR = (—1/14) K/] and from the 0.012
resolution of the HP 3468B ohmmeter with which we read the
thermistor resistance.

The central part of Fig. 9 shows the thermistor positions.
Two thermistors were attached to the surface of one of the
trailing plates in the assembly along the midline of the surface,
We selected a trailing plate for this measurement because the
highest temperature in vertical natural convection occurs at the
trailing end of the configuration. The readings provided by the
two thermistors were labeled T,, and 7,,. A third thermistor
was attached along the midline of an upstream plate. The fourth
thermistor was positioned 30 mm upstream of the assembly and
100 mm to the side (in the horizontal direction), for measuring
the temperature of the quiescent air.

The experiments were designed for three Rayleigh numbers,
Ra, = 10°, 5 X 10°, and 10, Each overall thermal conductance
was estimated by taking 25 measurements of the power dissi-
pated in all the heaters (¢), the maximum temperature (7,.,),
and the air temperature (7). The § values were calculated
using Eq. (4) with T,, in place of T,,. The properties of air
were evaluated at the film temperature (7, + T..)/2, where T,
= (Twl + Twl)/2

The uncertainties associated with § and Ra, were estimated
based on the method described by Moffat (1988). The bias
limit of 0.001 K determined during the calibration of the
thermistors agrees with the bias limit reported by Howle et
al. (1992) and an instrumentation handbook (Dally et al.,
1993). The bias limit for the voltage across the plate heaters
and their resistance are 0.001 V and, respectively, 0.86 Q
(i.e., 5 percent of 17.2 (). The uncertainty in the tabulated
properties of air (4, k, o, ) was taken as 5 percent. The
precision limit of measured quantities such as the temperature
and the power dissipated by the heaters was estimated as two
times the standard deviation. The precision limit values for
temperature were as high as 0.18 K, which made the 0.001
K bias limit negligible. Table 2 shows the experimental un-
certainties calculated for ¢ and Ra,.

An important limitation of the apparatus design is the size
(horizontal dimension) of the space in which the assembly
is tested. In the example shown on the right side of Fig. 9
there was room for only two of the ‘‘elemental channels’’
that were defined in Fig. 1. In the experiments a portion of
the buoyant air flowed around (on the outside) of the two
central elemental channels. This by-pass flow distinguishes
the experimental configuration from the numerical model (H
> W) constructed in Figs. 1 and 2. To account for this differ-
ence and still be able to make a meaningful comparison be-
tween the experimental setup and the closest numerical con-
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Fig. 9 The experimental apparatus

figuration available in the experiments, we calculated § based
only on the heat transfer rate released into the elemental
channels, which constituted the volume that was held fixed
(see Fig. 10 inset).

Figure 10 shows the experimental results for the effect of qg
channel spacing on the overall thermal conductance of the as-
sembly. An optimal spacing W that maximizes § exists for each
of the Rayleigh numbers that we considered. The behavior is 200
similar to what we found in the numerical part of the study
(e.g., Fig. 3). The agreement between the experimental and
numerical results is quantitative as well. In- Table 3 we show 100
the optimal spacings determined experimentally (Fig. 10) next
to the numerical results developed for N =4, 4 = 12,5 =1,
and ¢/b = 0.1. The agreement is very good, certainly from the 0
point of view of optimizing the geometry of an engineering
system, Note that in order to attain a § value close t0 Gy it is
sufficient to approximate W(,pl within 20 or 30 percent. The
agreement with respect to optimal spacing is iltustrated further Fig. 10 Experimental results showing the effect of the channel spacing
in Fig. 11: if the builder uses the W, value predicted based on  ©" the overall thermal conductance of the assembly
numerical simulations, then the device will operate close to the
highest § value of which it is capable. The agreement between

400

0.4

the experimental and numerical g« values (within 27 percent) 1000 3 .
is also worth noting, in view of the by-pass air flow and calcula- ] N =
tion of § during experiments. 1 A =12
. 7 Ra = 5x10°
a ]
T o]
Table 2 Experimental uncertainties: the table shows the values of oo o
[Uq/G1/1Uns, /Ray]. 1 ,
experimental
results
= — S 6 100 5
W Ra, = 10° 3% 10 10 ] numerical
0.296 0.105/0.098 0.026/0.077 0.063 / 0.062 ] results
0.148 0.126/0.137 0.061 / 0.065 0.059 / 0.062 0 1
T —— T
0.099 0.088 /0.103 0.06 /0.063 0.058/0.06 0.01 0.1 1
0.074 0.075/0.077 0.065 / 0.062 0.059/0.064 W
0.059 0.061/0.057 0.061 / 0.059 0.062 /0.064 Fig. 11 Comparison between the experimental and the numerical re-
sults for the geometric maximization of the overall thermal conductance
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6 Discussion

In this paper we showed that the geometric arrangement of
vertical staggered plates in a fixed volume can be optimized
such that the thermal conductance between the assembly and
the surrounding fluid is maximized, We demonstrated this opti-
mization principle numerically and experimentally. The geo-
metric optimum owes its existence to the fact that the vertical
natural convection boundary layers that coat the plates have a
characteristic thickness, the best way to fill the given space is
by selecting spacings that are comparable with the boundary
layer thicknesses (e.g., Bejan, 1984; Bar-Cohen and Rohsenow,
1984; Guglielmini et al., 1987; Tanda, 1993, 1995).

This explanation of the optimal geometry is also a way to
correlate and condense the present results into compact formulas
that have a theoretical basis. The work on constrained volumes
filled with parallel continuous plates showed that the optimal
plate-to-plate spacing and the maximal thermal conductance of
the assembly can be predicted by using a spacing W of the same
order as the boundary layer thickness L Ra;'/*, where L is the
height of the assembly. For example, these results are illustrated
in closed form by the brief analysis shown in Bejan (1995),
which yielded

WLQN =23 Ra;'" (15)
Do < 045 Ral” (16)

Equations (15) and (16) are purely theoretical: they represent
the trade-off point obtained by intersecting the small and large-
spacing asymptotes of the assembly. The overall thermal con-
ductance is maximum at this point, Eq. (16), because in the
small-W limit the flow experiences blockage, while in the large-
W limit the heat transfer area vanishes. The intersection of the
asymptotes method was applied to several configurations in both
natural and forced convection, as reviewed in Bejan (1995).
Rewritten in the dimensionless notation used in this paper, Eqgs.
(15) and (16) become

Weon = 2.3 Rag'" (17)

G S 0.45 Ra}’?. (18)

Equations (17) and (18) serve as a guide in correlating the
geometric optimization results reported in this paper. We seek
power-law functions of Ra; and find that our numerical results
(in Fig. 3, 10° = Ra, = 5 X 10°,04 <A < 1.2, N =4, /b
= 0.1) are correlated within 6.7 percent and, respectively, 6
percent by

Wop = 0.63A'4 Ra %" (19)

Gmax = 1.92¢ 7974 Ral®, (20)
Note that the 6 percent deviation represents a very tight correla-
tion in view of the additional geometrical complications ( physi-
cal differences between competing designs) brought about by
the presence of several plates in each vertical column.

The agreement between Egs. (19) and (20) and Egs. (17)
and (18) is both qualitative and quantitative. For example, when
Ra, = 5 X 10° and A = 1, Eq. (19) yields W,,, = 0.052,
which is only 40 percent smaller than the estimate based on the
continuous-plates formula, Eq. (17), (that is, a theory for a
different setup), namely ~W(,p‘ = (.086. On the usefuiness of
being able to anticipate W, approximately and efficiently we
commented when we discussed Table 3. For the same (Ra;, A)
case, Eq. (20) yields gn. = 268, which is 16 percent smaller
than (i.e., on the correct side of) the result based on Eq. (18),
qmnx = 318.

Journal of Heat Transfer

Table 3 Numerical and experimental optimal spacings for A = 1.2 and
N=4

Rar, W (numerical) w (experimental)
10° 0.098 0.109

5% 105 0.074 0.107
106 0.069 0.099

7 Conclusion

This paper demonstrated numerically and experimentally that
it is possible to optimize geometrically the internal architecture
of a finite-size volume such that its global thermal resistance is
minimized. The optimal arrangement of vertical staggered
plates in natural convection reported in this paper is only the
most recent in a continuing series of geometric optimization
results in both natural and forced convection (Bejan, 1995).
This geometric approach is important not only in engineering
design but also in explaining, in purely theoretical fashion, the
origin of the formation of geometry (e.g., shape, structure, and
nonuniformities) in nature, in both animate and inanimate sys-
tems (Bejan, 1997; Ledezma et al. 1997).
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Laminar Natural Convection
From an Elliptic Tube With
Different Orientations

The problem of two-dimensional natural convection heat transfer from a straight
tube of elliptic cross section is investigated. The tube, which has an isothermal
surface, is placed with its axis horizontal in an initially quiescent fluid of infinite
extent. The velocity and thermal fields are obtained by studying the time development
of these fields following a sudden increase of the tube surface temperature until
reaching steady state. The study is based on the solution of the full conservation
equations of mass, momentum, and energy with no boundary layer simplifications.
The paper focuses on the effects of the tube orientation, axis ratio, and Rayleigh
number while keeping the Prandtl number unchanged ( Pr = 0.7). The study revealed
that the maximum average Nusselt number is obtained when the tube major axis is
vertical, Within the range of axis ratios considered (Ar = 0.4 to 0.98), smaller Ar
resulted in higher heat transfer rate in most cases. Higher Rayleigh number leads
to higher velocities and also higher local and average Nusselt numbers in all cases
considered. The details of the steady flow and thermal fields are presented in the
form of local Nusselt number and surface vorticity distributions as well as streamline
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and isotherm patterns for some selected cases.

1 Introduction

Natural convection from cylinders or tubes of elliptic shapes
are receiving growing interest since they cover a wide extent
of geometries ranging from a flat plate (when the axis ratio Ar
= 0) to a circular tube (Ar = 1). This paper deals with the
problem of two-dimensional laminar natural convection from
an elliptic isothermal tube placed horizontally in an initially
static fluid of infinite extent. The variables affecting natural
convection are the Rayleigh number, Ra, Prandtl number, Pr,
tube axis ratio (minor to major axis ratio), Ar, and tube orienta-
tion, represented by the angle of inclination of the major axis,
\. The resulting flow and thermal fields are symmetric about
the tube’s minor or major axis only when either one is vertical
and asymmetric for other orientations.

Interest in studying natural convection from elliptic tubes
started in the early 70’s when Lin and Chao (1974) reported
their results on natural convection from two-dimensional and
axisymmetric bodies with circular and elliptic cylinders as spe-
cial cases. The solution had the drawback of its inapplicability
in the buoyant plume region since it was based on the solution
of the boundary layer equations with the buoyancy term re-
placed by a hypothetical outer stream velocity function. No
results were reported on the asymmetrical case when the major
axis is inclined. Raithby and Hollands (1976) studied the prob-
lem of natural convection from an elliptic cylinder with a verti-
cal plate and a horizontal circular cylinder as special cases. The
study was limited to the vertical major axis configuration. In
their work, a thin layer analysis applicable only to thin boundary
layer flows was modified to take into consideration the effect
of surface curvature. The average Nusselt numbers were found
to be in good agreement with the experimental data for a wide
range of Rayleigh numbers. Merkin (1977) studied the symmet-
rical case of the same problem when either the major axis or
the minor axis was vertical. The study was based on the solution
of the boundary layer equations, and results were obtained for

Contributed by the Heat Transfer Division for publication in the JOURNAL oOF
HEAT TRANSFER. Manuscript received by the Heat Transfer Division May 30,
1996; revision received April 14, 1997; Keywords: Natural Convection; Numerical
Methods. Associate Technical Editor: K. Vafai.
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the entire cylinder surface excluding the buoyant plume region.
None of the above researchers considered the low Ra range
when boundary layer simplifications are invalid. The most rele-
vant experimental study is that reported by Huang and Mayinger
(1984) in which laminar natural convection from elliptic tubes
was studied for different orientations and for different axis ra-
tios. The average and local Nusselt numbers were reported to-
gether with correlations for Nu. Badr and Shamsher (1993)
solved the problem of free convection from an elliptic cylinder
for Rayleigh numbers ranging from 10 to 10°, and axis ratios
ranging from 0.1 to 0.964. The solution covered the entire flow
region with no boundary layer approximations. The paper fo-
cused on the final steady solution only for the special case of
a vertical major axis with no details reported on the transient
results.

The two limiting cases of the elliptic tube (namely the flat
plate and the circular cylinder) received a considerable attention
in the past. The reported work on the limiting case of Ar = |
include the papers by Pera and Gebhart (1972), Merkin (1976),
Kuehn and Golstein (1980), and Farouk and Guceri (1981)
which dealt with the analysis of the steady natural convection
regime. The same problem was studied by Elliot (1970) and
Badr (1987) but with emphasis on the transient phase of the
development of the thermal field as it approaches its final steady
state. The boundary layer equations were solved by Elliot
(1970) while the full equations were considered by Badr
(1987). The other limiting case of a flat plate (Ar = 0) was
studied by Goldstein and Briggs (1964) who investigated tran-
sient free convection from vertical semi-infinite plates and cir-
cular cylinders following a change in wall temperature. The
problem of steady free convection from finite vertical and hori-
zontal plates was solved by Suriano and Yang (1968) in the
Rayleigh number range up to 300. The streamline and tempera-
ture contours were plotted for both low Ra conduction regime
and moderate Ra convection regime. Hardwick and Levy
(1973) focused on the analysis of the wake region above an
isothermal vertical plate. The problem was investigated theoreti-
cally and experimentally in order to determine the temperature
and velocity profiles in the wake for Grashof numbers ranging
from 10* to 10°. Correlating equations for laminar and turbulent
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Fig. 1 The elliptic tube geometry and the coordinate system

free convection from a vertical plate were reported by Churchill
and Chu (1975) based on the available experimental data and
theoretical solutions for Rayleigh numbers ranging from zero
to infinity. The spatial development of the wall and free plumes
above a heated vertical plate was investigated by Sparrow et
al. (1978). The investigation was based on the solution of the
laminar boundary layer equations in order to determine the
velocity and temperature profiles in the plume which was either
developing freely or adjacent to an adiabatic wall. The distances
required to reach a fully developed plume were obtained in both
cases.

2 Conservation Equations and Method of Solution

Consider a straight tube placed horizontally in an initially
quiescent fluid of temperature 7T... The tube cross section is
elliptic with major axis 2a and minor axis 2b. The major axis
is inclined to the horizontal with an angle X\, as shown in Fig.
1. The tube surface temperature is suddenly and uniformly in-
creased to 7, thus creating a buoyancy driven flow. The initial
flow is transient but approaching steady state as time increases.
The tube is long enough such that the end effects can be ne-
glected and the resulting flow and thermal fields can be consid-
ered two-dimensional. Assuming a Boussinesq fluid and ne-
glecting viscous dissipation, the conservation equations of mass,
momentum and energy can be expressed as:

—§ =V (1
oo,k _1[en on], o
6t+u6x+yc')y—p[6x 6y]+uVC (2)

Nomenclature

g+u£+ug=aV2T (3)
ot Ox dy
where V> = (0%/8x%) + (0*/8y*) and F, and F, are the x
and y-components of the buoyancy force, F, respectively. The
defining equations of these components are

F.=Fysin\, F,=F,cos\, F,=pgp(T - T.).

Let us now introduce the dimensionless variables x’ = x/L, y’
=y/L,t' = tall?, u' = ullo,v' =vlia, ' = la, {’ =
—{L%a and ¢ = (T — T..)/(T, — T.) in Bgs. (1-3) and then
drop all primes for simplicity. The dimensionless form of the
above equations can be written as:

£=V% 4
o, 9%, 0%
o "o TV By
= —Ra P1r[?i cos A — 9¢ sin )\] + Prv¥  (5)
Ox Oy
8¢+u%+u—a—¢-=v2q§ (6)

£ Ox Oy

where Ra is the Rayleigh number (=g8L*(Ts — T.)/var).

The boundary conditions are mainly the no-slip and imperme-
ability conditions on the tube surface and the ambient conditions
far away from it. These can be expressed as: u = v = § and ¢
= 1 on the tube surface, and u, v, ¢, { = O far away from the
surface.

In order to work with coordinates appropriate to the tube
geometry, we write Eqs. (4—6) in elliptic coordinates using the
transformation

x + iy = c cosh (£ + in)

where c is the dimensionless focal distance (= (a* — b*)'"?/
L). Using the above transformation, Eqgs. (4—6) can be written
as:

HE = Vy (7N

o8 o oL oy oL .
H=2 42 _ 275 - _
; n O¢ " Ra Pr| (sinh £ cos A cos i

— cosh & sin A sin 77) %g — (sinh £ sin A cos

Ar = minor to major axis ratio,
bla
a, b = semimajor and minor axes
¢ = dimensionless focal dis-
tance, (a? — B)VY/L
¢, = fluid specific heat
F,, f,, F, = functions defined in Eq.
(11a)
F, = buoyancy force
g = gravitational acceleration
G,, g., G, = functions defined in Eq.
(11b6)
Gr = Grashof number, g 8L (T
- T)/v?
h = heat transfer coefficient
H,, h,, H, = functions defined in Eq.
(11¢)
k = fluid conductivity

T )l v

Greek symbols
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__L = characteristic length, 2a
Nu, Nu = local and average Nusselt
numbers defined in Eq. (17)
P = elliptic section perimeter
Pr = Prandtl number, v/«
Ra = Rayleigh number, g 8L*(Ts —

t = dimensionless time
T = fluid temperature
u, v = dimensionless x and y-velocity
components
x, y = rectilinear coordinates

6 = Kronecker delta
€ = vorticity
1, & = elliptical coordinates
A = angle between major axis and the
horizontal
v = fluid kinematic viscosity
p = fluid density
¢ = dimensionless temperature
{ = dimensionless stream function

Subscripts

s = at the surface
oo = at infinite distance from the
surface

o = thermal diffusivity
B = coefficient of volumetric
thermal expansion

Transactions of the ASME

Downloaded 11 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 Comparison between the values of W obtained in the present study and those obtained
by Huang and Mayinger (1984)

Ra by Nu (Present Study) Nu (Reference {4}) %
Ar=0.4 Ar=0.389 Difference
10} 900 3.59 3.41 5.01%
104 (W 4.90 4.98 1.63%
104 9Q° 591 6.06 2.54%
—cosh{cos)\sinn)% + PtV (8) w:-a—lp:a—w:O, d=1 at £=¢, (10a)
on 0¢  On
oy oy
l/’s‘bv—,——y CQO as E=°° (10b)
H8_¢+_6__l/ia_¢_@£@=v2¢ (9) ¢ " on

ot on o € on

where H = jc?(cosh 26 — cos 2n). The boundary conditions
given following Eq. (6) can now be expressed as:

) |

10 {-

Nu

[} 1 L A 1 1

90 120 150 180 210 2ko 270

n

Fig. 2 Comparison between the local Nusselt number distribution ob-
tained in this study for the case of Ra = 10%, Ar = 0.4, and A = 0 deg
and the experimental results given by Huang and Mayinger (1984) for Ar
= 0,389: (——) present study; (A) Huang and Mayinger

15.0

The initial conditions which apply for + = 0 are the static
conditions and uniform temperature distribution (¢ = 0) in the
entire field. At the start of computations (¢ = 0), the dimen-
sionless tube surface temperature is suddenly increased to 1.0,
and this moment represents the start of the time development
of the flow and thermal fields. The main mathematical problem
is to predict the details of both fields as time increases. The
method adopted here is similar to that used by Badr (1983,
1994). In this method, the dimensionless stream function, vor-
ticity, and temperature are approximated using a finite number
of terms in a Fourier series and can be expressed as follows:

N
Y =3F, + X [f(& 1) sinnn + F,(& 1) cos n]  (11a)

n=1

N
§=3G, + X [8.(& 1) sinnng + G,(& 1) cos nn]  (11b)

n=1

N
¢ =3H, + X, [h(& t)sin ny + Hy(& 1) cos nn]. (11c)
n=1
The use of the above approximations in Eqs. (7-9) results in
three sets of differential equations for the Fourier coefficients
with each set containing (2N + 1) equations. The first set
specifies the differential equations governing the time variation
of the Fourier coefficients of vorticity (G,, g,, and G,) and can
be expressed as follows:

2
é—cz[cosh 28 Q{% - ‘9G2] =Pr 0°G, + 8,06 1) (12a)

o ae?

15.0

//_Ra = 10%
[Ra = 10°
o 1 1 — i 1 1 —
[} ! L 1 1 i 4 I [$} 1.0 2.0 3.0 )
0 1.0 2.0 3.0 Lo t{c/L)?
t{c/L)?

Fig. 3 The time variation of the average Nusselt number for the case of
vertical major axis (A = 90 deg): (——) Ar = 0.4; (-~--- ) Ar = 0.6
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Fig. 4 The time variation of the average Nusselt number following the
sudden temperature rise for the case of A = 0 deg. (——) Ar = 0.4;
(~---~ )Ar = 0.6
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where 8, is the Kronecker delta (8,, = 0 for m # n and 6,.,
= 1 for m = n) and sgn (n — 2) represents the sign of the term
(n — 2). The terms with subscript |n — 2| vanish when n =
2 and the functions S,, S,;. and S, are easily identifiable func-
tions. Equations (12a) - (12¢) are to be integrated in time in
order to predict the functions G,, g,, and G, at time level (¢ +
Ar), provided that these functions are known at time ¢.

The second set specifies the differential equations that pro-
vide the link between vorticity and stream function. This set
results from using the approximations (given in (11)) in the
stream function, Eq. (7), which finally gives

?9255" = %cZ[cosh %G, - Gl (13

% — n?f, = Jc¥[cosh 2¢g,
— 5(sgn (n = 2)gju-2l + ueny}] (13b)

562;';” — n®F, = 3c*cosh 2£G,

~ 361G, + G| + Gusny}] . (13¢)

The last set of equations governs the time variation of Fourier
coefficients of the dimensionless temperature ¢. This set is
obtained by using expressions (11a) and (11¢) in Eq. (9) which
results in

%cz[cosh 26 + Z, (&, 1) (l4a)

1 Ohjnes) | Ohguany
—_—— — ) — 4 —=
2 {sgn ( ) ot Ot

oH, _ bt _ 9%,
ot ot ¢?

c’[cosh 26 8ht"

0

23

2
= 2[6 by _ nzh,,:l + nF, oH,

Fig. 5 (left) The streamline patterns for the case of Ra = 10°, Ar = 0.6,

and A = 30 deg at times (a) t* = 0.5, (b) t* = 1.0, (c) t* = 2.0, {d} t* = oF,
3.0, (e) t* = 4.0. Streamlines plotted are ¢ = —9.0(1.0) — 3.0(0.5) — —nH,— + Z,, (& t) (14b)
1.0{0.25)1.0{0.5)3.0(1.0)9.0. o¢

Fig. 6 (right}) The isatherm patterns for the case of Ra = 10°, Ar = 08,  Table2 The effect of axis ratio on the average Nusselt number for the
and A = 30 deg at times (a) t* = 0.5, (b) t* = 1.0, (¢} t* = 2.0, (d) t* = norizontal and vertical major axis configurations
3.0, (e) t* = 4.0. Isotherms plotted are ¢ = 0.1(0.1)0.9.

Ra A Ar ‘Nu
04 3.20
103 00 0.6 3.16
8gn 1 ag\n—Zl 6g(n+2) 0.8 3.11
\2 h k=LY o _— —olumal o Tomra)
¢ [COS X% "2 {qgn =2 o1 0.4 3.59
103 900 0.6 3.44
, 08 323
=2 Pr[ 08 _ nzg,,:l + nF, 2 0.98 3,09
23 9¢ 0.4 4.90
104 00 0.6 4.96
dF, 0.8 4.93
104 900 0.6 5.63
8G, 1 8G, OGa G 0.8 5.36
2 h2e =2~ -1, 0 4 Hn=2i | Py
¢ [COS o 2 { 2o T o ot 0.98 2.05
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Fig. 7 The effect of tube orientation on the local Nusselt number distribution for the case of

Ra = 10°and Ar = 0.6: (—) A = O deg; (- - - :

A\ = 90 deg
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¢ [“’S $or 2{ 2o T or or
2
<o Tl ] o,

- nf, %% + Zna(&, 1) (l4c)

where the functions Z,, Z,,, and Z,, can be casily identified.
The boundary conditions given in Eq. (10) provide a source
for the boundary conditions of all Fourier coefficients. The Fou-
rier series approximations (given in Eqs. (11a—c)) are used in
Eqgs. (10a) and (10b) and results in the following conditions:

60

) A = 30 deg; (~--~- )X =60deg; (-:-:~-+~}

h,,=H,.=F,,=f,,=F,,=2(F,,,f,,,F,,)=0 and

0¢
H,=2 at £=¢, (15q)
H(H hn’ Hrl7 F{l, f;l? Fﬂ’ G()’ gm GIH —86-—5‘ (F(J’f;l’ Fn) = O
as £ = . (15b)

A set of integral conditions is also obtained by integrating Egs.
(13a) - (13¢) with respect to ¢ between &, and © and making
use of Egs. (15a) and (15b). These conditions are

% 2
f % {cosh 26G, — G,)dE = 0

o

(16a)

-60 ! 1 1 L

0 Lo 80 120 160

200 2ho 280 320 360
n

Fig. 8 The effect of tube orientation on the surface vorticity distribution for the case of Ra =
10%and Ar = 0.8; (—)A=0deg; (- -+ )\ = 30 deg; (----- YA =60deg; (-:~"~ )N =190

deg
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* ¢? 1
? cosh 2€g, — 5 [sgn (n — 2)g,-z)

+ iyl }e_nédf =0 (16b)
f‘”ﬁ cosh 2£G, ~1[6 G, +G
. 9 G n ) n2Wo tn—2{
+ G(n+2)] }ejngdé- = 0. (16b)

The above integral conditions are similar to those deduced by
Badr (1994) though not the same. These conditions are im-
portant not only for predicting the values of G,, g,, and G, on
the tube surface (£ = £,) but also for ensuring the periodicity
of pressure (for more details, see Badr, 1994).

The numerical integration of Eqs. (12—14) starts at = 0 by
setting H, = 2 at £ = £, while equating all other Fourier coeffi-
cients to zero in the entire domain. This simulates the sudden
temperature rise of the tube surface temperature from 7., to 7.
The conditions at £ = « are enforced at a distance that can
reach a maximum of £, = £, + 10, which corresponds to a
very large distance away from the tube surface (greater than
11,000 times the focal distance). The actual field boundaries
are time dependent, matching the physical behavior of the flow
and thermal fields. At small times, the flow and thermal fields
are limited to the immediate neighborhood of the tube surface,
however, the size of the two fields increases as time increases
until reaching steady conditions. The solution procedure follows
closely the same procedure described in Badr (1983, 1994 ) and
will not be repeated here.

The local Nusselt number is defined as Nu = hL/k where i
is the local heat transfer coefficient given by

h = —k[ﬂ] I(Ts — T.)
on |,

and n is the dimensional coordinate normal to the surface. Using
the above definitions, one can easily prove that

hL 1 [ 8¢
Nu=-—=——|—=1|.
u k Hllz[asilfo

The average Nusselt number, Nu, is calculated using the above
expression which is averaged over the elliptic section perimeter
and can be written as:

(17a)

Nu = —(2a7r/P)[ 6H"] (17b)
’ &,

23

where P is the elliptic section perimeter.

3 Verification of the Method of Solution

The accuracy of the method of solution is verified by con-
sidering a number of cases for which either experimental or
theoretical results are available for comparison. Results for
the special case of a circular cylinder reported earlier by
Kuehn and Goldstein (1980) are compared with the case of
elliptic tube with axis ratio Ar = (.98 considered in this
study. Kuehn and Goldstein reported Nu = 3.09 and 4.94 for
Rayleigh numbers Ra = 10? and 10 while the present method
predicted Nu = 3.09 and 5.05 for the same two Rayleigh
numbers. The percentage difference in Nu for the case of Ra
= 10* is 2.2 percent. The experimental results obtained by
Huang and Mayinger ( 1984) for free convection from elliptic
tubes are also compared with the present results. In their
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(v) (b)

Fig. 9 (left) The streamline patterns for the case of Ra = 10°, Ar = 0.6,
and inclination angles (a) A = 30 deg and (b) A = 60 deg. Streamlines
plotted are the same as in Fig. 5.

Fig. 10 (right) The isotherm patterns for the case of Ra = 10°, Ar = 0.6,
and inclination angles (a) A = 30 deg and (b) A = 60 deg. Isotherms
plotted are the same as in Fig. 6.

work, Nu and Ra were based on the equivalent diameter D
= 4A/P, where A is the tube cross-sectional area. Further-
more, the value of Ar studied by Huang and Mayinger nearest
to the values considered in this work is Ar = 0.389. Table 1
shows a comparison between the values of Nu obtained in
the present work for Ar = 0.4 and those reported by Huang
and Mayinger for Ar = 0.389, after making the necessary
corrections to match the present definitions of Ra and Nu.
The table shows a percentage difference in Nu ranging from
1.63 percent to 5.01 percent.

A comparison between the local Nusselt number distribution
obtained in this study for the case of Ra = 10* and Ar = 0.4
when the major axis is horizontal (A = Q) and the experimental
Nu distribution reported by Huang and Mayinger for the same
Ra and N but for Ar = 0.389 is shown in Fig. 2. The figure
shows a good agreement in the neighborhood of the rear and
front stagnation points (1 = 90 deg and 270 deg) with reason-
able agreement near n = 180 deg. The differences are attributed
to three reasons. The first is due to the difference in the value
of Ar considered in the two studies, and the second is due to
the accuracy of the experimental prediction of Nu from the
interferograms. The third reason is due to curve fitting of experi-
mental data. The point of maximum Nu reported by Huang and
Mayinger was at = 180 deg, while it is found at n = 182 deg
in the present study. The above comparisons show that the
numerical scheme used in this study is highly accurate.

4 Discussion of Results

The problem of natural convection from a horizontal tube of
elliptic cross section is studied with special emphasis on the
effects of angle of inclination, Rayleigh number, and the tube
axis ratio while keeping the Prandtl number unchanged (Pr =
0.7). In all cases, the tube surface temperature, which is as-
sumed isothermal, is suddenly increased and the thermal and
momentum boundary layers continue to develop with time until
reaching steady conditions. Figure 3 shows the time variation
of the average Nusselt number following the sudden tempera-
ture rise when the major axis is vertical (A = 90 deg) for
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Fig. 11 The local Nusselt number distribution for the case of Ra = 10* and Ar = 0.6:
(—)A=0deg;{----- } A = 30 deg; (~~~-~ }A =60deg; (-~ =) A =90deg

Rayleigh numbers of 10° and 10 and axis ratios of Ar = 0.4
and 0.6. As expected, Nu is very high at small times since the
thermal boundary layer starts with infinitely small thickness.
The sharp decrease in Nu at small times reflects the rapid growth
of the thermal boundary layer. The heat transfer regime in this
phase is dominated by conduction due to the very small flow
velocities prevailing at small times. The case of transient con-
duction for the same initial conditions is investigated for com-
parison with the small time results obtained in the present study.
The same governing equations and numerical scheme are used
with the exception of keeping zero flow velocities at all times.
The transient Nu-¢ curve for the conduction regime is also
shown in Fig. 3 for the case of Ra = 10° and Ar = 0.4. The
comparison shows the close behavior of the conduction and
convection regimes at small times. Another interesting phenom-
enon observed is that the heat transfer overshoot occurs in the
intermediate stage between the small time conduction regime

and the large time convection regime. Figure 3 shows this phe-
nomenon for the two cases of Ra = 10* and 10*, though more
pronounced in the latter case.

The same phenomenon was reported for the case of a circular
cylinder in the works by Vest and Lawson (1972), Parsons and
Mulligan (1978, 1980) and by Faw et al. (1984). Figure 3 also
shows that higher Ra results in higher Nu values while higher
axis ratio lead to lower heat transfer rates.

The time development of Nu for the same conditions but
with horizontal major axis is shown in Fig. 4. It is clear from
the figure that the Nu-f curves at small time (the conduction
phase) are exactly the same for different values of Ra but the
same axis ratio. Such phenomenon is quite expected based on
theoretical grounds since the governing equations (Eqs. (7-
9)) reduce to a simplified form of Eq. (9) by eliminating the
convection terms. The remaining equation in this case is the
transient heat conduction equation

2ko

160

80

-80

-160

J

-2k0
0

i ( s
Lo Bo 120 160

Fig. 12 The surface vorticity distribution for the case of Ra = 10* and Ar = 0.6: (—) A =0
deg; (+ - - - ) A = 30 deg; (<~--- JA =60 deg; (- -~ ) A = 90 deg
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Fig. 13 (left) The streamline patterns for the case of Ra = 10*, Ar = 0.6,
and inclination angles (a) A = 30 deg and (b) A = 60 deg. Streamlines
plotted are the same as in Fig. 5.

Fig. 14 (right) The isotherm patterns for the case of Ra = 10*, Ar = 0.6,
and inclination angles (a) A = 30 deg and (b) A = 60 deg. Isotherms
plotted are the same as in Fig. 6.

Hog!10t = V¢

with no role for the Rayleigh number in the heat transfer pro-
cess. Similar to Fig. 3, the heat transfer overshoot occurs clearly
in the case of Ra = 10* and with less extent when Ra = 10°.
The time variations of the flow and thermal fields following the
sudden temperature rise are shown in Figs. 5 and 6 for the case
of Ra = 107, Ar = 0.6, and A = 30 deg. The streamlines and
isotherms at small time (£* = ¢(¢/L)* = 0.5) shown in Figs. 5a
and 6a indicate low flow velocities in the first and a conduction
dominated regime depicted by concentric isotherms in the sec-
ond. As time increases, the flow velocity increases and convec-
tion becomes more dominant until reaching the final steady state
(Figs. 5e¢ and 6e). L

The final steady values of Nu for the horizontal major axis
configuration (A = 0 deg) are lower than those obtained in the
vertical axis case (A = 90 deg). The numerical values of Nu
for both cases and for different axis ratios are given in Table
2. The effect of tube orientation on the local Nusselt number
distribution is shown in Fig. 7 for the case of Ra = 10°, Ar =
0.6, and » = 0 deg, 30 deg, 60 deg, and 90 deg. One interesting
phenomenon clearly shown in Fig. 7 is that the maximum local
Nusselt number occurs at approximately n = 180 deg in all
tube orientations. This point always represents one end of the
tube major axis. In the case when the major axis is vertical, the

Table 3 The effect of angle of inclination on the average Nusselt number
for the case of Ar = 0.4

Ra A Nu
00 3.16
103 300 3.23
600 3.35
900 3.44
00 4.96
104 300 5.11
60° 5.34
90° 5.63
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Fig. 16 The effect of axis ratio on the local Nusselt number distribution
when the major axis is horizontal and (a) Ra = 102, (b) Ra = 10%: (——)
Ar = 0.4; ( ...... ) Ar = 0_6; ( ..... ) Ar =08

point of maximum Nu is the lowest point on the tube surface
(forward stagnation point) while in the case when the major
axis is horizontal, the two end points of the major axis (n = 0
deg and n = 180 deg) are very close to the points of maximum
Nu. On the other hand, the point of minimum heat transfer
moves from 7 = 90 deg in the case when the major axis is
horizontal to = 0 deg when the major axis is vertical. In
both cases, this point is the topmost point on the tube surface
(corresponding to the rear stagnation point). Figure 8 shows
the surface vorticity distribution for the same cases presented
in Fig. 7. The maximum absolute surface vorticity occurs near
1 = 0 deg and 180 deg in the case of horizontal major axis (A
= 0 deg), which is approximately the same location of maxi-
mum local Nusselt number. The two cases of A = 0 deg and X\
= 90 deg show symmetrical absolute surface vorticity and local
Nusselt number about minor and major axes, respectively, as
shown in Figs. 7 and 8. The streamline and isotherm patterns
for the cases of Ra = 10°, Ar = 0.6, and inclination angles \
= 30 deg and 60 deg are shown in Fig. 9 and 10. The figures
show the front and rear stagnation points (these are the points
of zero vorticity in Fig. 8) and also show the relative magnitude
of the temperature gradient normal to the tube surface. It is
clear from the figures that the rear stagnation point in both cases
of A = 30 deg and A = 60 deg is the point of minimum tempera-
ture gradient and accordingly the point of minimum local Nus-

Transactions of the ASME

Downloaded 11 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



10

Nu

0 30 60 90 120 150 180

Figure 16a

15

0 Il 1 1 1 Il

0 30 60 90 120 150 180
n

Figure 16b

Fig. 16 The effect of axis ratio on the local Nusseit number distribution
when the major axis is vertical and (a) Ra = 10°, (b) Ra = 10*: ( ) Ar
=04 (- ) Ar = 0.6; (----- )Ar=08; (- :---) Ar = 0.98

selt number. This criterion also applies to the other two cases
of A = 0 deg and A = 90 deg, as it is clearly shown in Figs, 7
and 8.

The higher Rayleigh number case of Ra = 10“ is investi-
gated for the same axis ratio (Ar = 0.6) and inclination
angles (A = 0 deg, 30 deg, 60 deg and 90 deg). The local
Nusselt number distributions shown in Fig. 11 indicate that
the point of maximum Nu continues to be near n = 180 deg
for all tube orientations, while the point of minimum Nu
exists at the rear stagnation point in all cases. The figure also
shows that the case of vertical major axis (A = 90 deg)
possesses higher Nu values over most of the tube surface in
comparison with the case of horizontal major axis (A = 0
deg). Figure 12 shows the surface vorticity distributions for
the same cases presented in Fig. 11. Since no separation
exists on the tube surface, the points of zero vorticity repre-
sent either the front or the rear stagnation points. By compar-
ing Figs. 8 and 12, one can see that the general shape of
the vorticity distribution curves when Ra = 10* differs only
slightly from those obtained in the case of Ra = 10*. How-
ever, the magnitudes are much higher in Fig, 12. The stream-
lines and isotherms are shown in Figs. 13 and 14, respec-
tively, for inclination angles of 30 deg and 60 deg. The closer
isotherms in Fig. 14 reflect the higher temperature gradient
and accordingly higher local Nusselt number. The overall
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effect of the inclination angle on the average Nusselt number
is shown in Table 3. Tubes with vertical major axis result in
higher Nu values for the Ra values considered.

The effect of tube axis ratio on the local Nusselt number
distribution is shown in Figs. 15¢ and 155 for the two cases
of Ra = 10°* and 10 when the major axis is horizontal (A =
0 deg). The general shape of the curves given in the two
figures is the same with the only difference being in the
numerical values. Tubes with smaller axis ratio have higher
Nu values in the range of = 136 deg to 220 deg, while the
differences are small on the rest of the tube surface. All
curves in Figs. 15a and 15b possess a maximum Nu at 5 =
180 deg and two minimums: one absolute minimum at the
rear stagnation point (n = 90 deg) and another minimum at
the front stagnation point (7 = 270 deg). The effect of axis
ratio is also studied for the vertical major axis configuration
(X = 90 deg) and the results are shown in Figs. 16a and 16b
for the two cases of Ra = 10° and 10*. The figures show
that changing Ar has little effect on Nu between n = 50 deg
and 7 = 120 deg with the major effect being in the small
region downstream of the front stagnation point (n = 120
deg to 180 deg). Table 2 shows that tubes of small axis ratio
have higher Nu values in most cases. The effect of axis ratio
on the resulting streamline and isotherm patterns is shown
in Figs. 17 and 18 for the vertical axis configuration and in
Figs. 19 and 20 for the horizontal axis configuration. Figure
18 shows the minimum temperature gradient occurring at the
topmost point on the tube surface (7 = 0) while the maximum
temperature gradient occurs at the lowest point (n = 180
deg). Similar to the vertical major axis configuration, Fig. 20

Fig. 17 {left) The streamline patterns for the case of Ra = 10%, A = 90
deg and (a) Ar = 0.4, (b) Ar = 0.6, (c) Ar = 0.8

Fig. 18 {right) The isotherm patterns for the case of Ra = 10%, A = 90
deg and {a) Ar = 0.4, (b) Ar = 0.6, (c) Ar = 0.8
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Fig. 19 (lefty The streamline patterns for the case of Ra = 10, A = 0
deg and (a) Ar = 0.4, (b) Ar = 0.6, (c) Ar = 0.8

Fig. 20 (right} The isotherm patterns for the case of Ra = 10, A = 0
deg and (a) Ar = 0.4, (b) Ar = 0.6, (c) Ar = 0.8

shows minimum temperature gradient at the topmost point,
however, the maximum temperature gradient occurs at the
two ends of the tube major axis (7 = 0 and 180 deg) where
the magnitude of surface vorticity is maximum.

5 Conclusions

The time development of the flow and thermal fields in the
neighborhood of a straight tube of elliptic cross section is inves-
tigated when the tube is suddenly heated while placed in an
initially quiescent fluid of infinite extent. The resulting flow is
driven by buoyancy forces, and the heat transfer regime is
purely natural convection. The study focused on the effects of
tube orientation, axis ratio and Rayleigh number while keeping
Prandtl number unchanged. The tube orientation varies from
horizontal to vertical major axis while the axis ratio varies from
0.4 to 0.98. Results are obtained for the two Rayleigh numbers
Ra = 10° and 10*. The study revealed that the average Nusselt
number is maximum when the major axis is vertical. It also
revealed that smaller axis ratio results in higher heat transfer
rates in most cases. Higher Rayleigh number leads to higher
flow velocities and accordingly higher heat transfer rates. The
results show that the point of maximum Nu is always at or near
71 = 180 deg, while the point of minimum Nu is at the rear

718 / Vol. 119, NOVEMBER 1997

stagnation point for all cases considered. The details of the flow
and thermal fields for some selected cases are presented in the
form of surface vorticity and local Nusselt number distributions
as well as streamline and isotherm patterns.
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thermal radiative transport in highly nonhomogeneous media containing water vapor
and carbon dioxide. 1t is shown that the magnitude of the spectral interval over which
k-distribution functions are generated can be increased up to approximately 1000
em™ for water vapor and 500 cm™' for carbon dioxide, with only a slight loss of
accuracy. Different solution techniques of the radiative transfer equation in nonhomo-
geneous media are used and compared. The wide band correlated-k method and a
simplified approach to the exponential wide band correlated-k method are shown to

provide very good results for the cases considered. The calculations include the entire
infrared spectrum of water vapor and carbon dioxide for temperatures up to

2500 K.

Introduction

Thermal radiative transport in absorbing, emitting and scat-
tering media must address the spectral interval under consider-
ation and the physical property variation with position. The
spectral intervals include individual wavenumbers by summing
the rotational-vibrational line contributions (line-by-line
method), narrow spectral intervals with band models (narrow
band models), entire rotational-vibrational bands (wide band
models), and the entire wavelength spectrum (total models).
The use of each of these models in thermal radiative transport
calculations has various advantages and disadvantages. Since
practical applications include variations of properties with posi-
tion, the transport must accurately incorporate such variations.
Additionally, the computational accuracy and efficiency of the
thermal transport methodology is dependent upon the relation-
ship between the spectral interval and position dependence.

The exact method of solving gas radiation problems is the
line-by-line method. The method evaluates the absorption coef-
ficient at each spectral location by summing the contributions
of all vibrational-rotational absorption lines within neighboring
spectral intervals. This approach requires detailed gas informa-
tion, including the line intensity, linewidth, line center position,
transition lower level energy, and quantum identification, which
are functions of the local physical characteristics of the gas.
The large number of absorption lines within an absorption band
can be handled through existing databases, yet significant com-
putational effort and large data storage capacity are required.

An often used database is known by the acronym of HITRAN
(Rothman et al., 1992a, b; Rothman 1996), which was origi-
nally designed for use in atmospheric analyses and recently
extended to include reliable high temperature line-by-line infor-
mation. The main difficulty in the development of high tempera-
ture data is the exponential increase in the number of significant
lines with temperature, since the transitions irrelevant at low
temperature become important as the temperature increases.
Special interest has been placed on the study of water vapor
and carbon dioxide at high temperatures due to their importance
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in combustion applications. Hartmann et al. (1984 ) and Riviere
et al. (1995) developed line-by-line procedures for H,O hot
lines, valid for temperatures up to 1500 K and 2500 K, respec-
tively. Taine (1983) developed a line-by-line calculation for
CO,-CO gas mixtures up to 3000 K, while Scutaru et al. (1994)
developed a new high temperature database for CO,. Hot lines
for these molecules are also efficiently generated with the Direct
Numerical Diagonalization method (DND), based on the varia-
tional method for solving the quantum mechanical equations
(Wattson and Rothman, 1986, 1992). Recently, Rothman
(1996) released the HITEMP database containing spectral in-
formation up to 1000 K for the commonly used gases and up
to 1500 K for water vapor. The present investigation uses this
spectral information for radiative transport in nonhomogeneous
media.

The significant computational burden required by the line-by-
line method has necessitated the use of band models designed to
approximate the nongray gas behavior over various spectral
intervals. The narrow band model replaces spectral properties
with averages of the gas radiative properties over a relatively
small spectral interval and uses the band average transmissivity
or absorptivity as the primary quantity. The most accurate mod-
els, termed statistical models, assume randomly positioned
lines. Goody (1952) considered a random model, together with
an exponential line intensity distribution within the band, while
Malkmus (1967) assumed an exponential-tailed inverse line
intensity distribution function. A large body of literature has
focused on the development and improvement of the narrow
band parameters. Ludwig et al. (1973) developed narrow band
parameters for many common gases for a wide range of condi-
tions. Bernstein (1980) and Bernstein et al. (1980) generated
rotational vibrational lines and calculated narrow band parame-
ters for linear triatomic molecules. Hartmann et al. (1984) and
Riviere et al. (1995) updated the band parameters for the H,O
molecule. Soufiani and Taine (1997a) used the Malkmus nar-
row band model and developed band parameters for water va-
por, carbon dioxide, and carbon monoxide up to 2900 K. The
present work uses the narrow band parameters (Soufiani and
Taine, 1997a, 1997b) for calculations in high temperature non-
homogeneous media.

Narrow band model validation and application in transport
equation solutions have received considerable attention. Soufi-

NOVEMBER 1997, Vol. 119 / 719

Copyright © 1997 by ASME

Downloaded 11 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


mailto:buckius@jx1.cso.uiuc.edu

ani et al. (1985) compared the narrow band model results with
line-by-line calculations for both water vapor and carbon diox-
ide, concluding that the random statistical models give accurate
results for transmissivities but introduce errors in emissivity
calculations. Wang and Ryan (1983) extended the applicability
of the statistical narrow band models to mixtures of absorbing
gases. Menart et al. (1993) developed a narrow band formula-
tion to solve for nongray radiative gas problems using the S-N
discrete ordinate method. Kritzstein and Soufiani (1993) em-
ployed the statistical narrow band model to study the gas radia-
tion in a homogeneously turbulent medium. Liu and Tiwari
(1994) apply the Malkmus narrow band model in connection
with a Monte Carlo method and investigate the radiative trans-
port of nongray gases in complex geometries. The narrow band
models constitute an accurate tool in radiative heat transfer
calculations.

Thermal transport analyses require radiative transfer calcula-
tions over the entire infrared spectrum. The desire for computa-
tional efficiency led to the development of models useful for
entire rotational-vibrational bands, termed wide band models.
The most popular wide band model assumes that the mean
intensity-to-spacing ratio varies exponentially. Edwards and
Menard (1964), Edwards and Balakrishnan (1973), Edwards
(1976) and Edwards (1981) applied this wide band model to-
gether with the statistical narrow band model developed by
Goody (1952) and derived simple correlations for the band
absorption. Modak (1979) improved the band parameters for
the rotational band of water vapor. Wang (1983) developed an
analytical solution for the exponential wide band model applied
to the Malkmus narrow band model. Considering applications,
Soufiani et al. (1985) used the band parameters as derived by
Edwards for CO, and H,O with combined conduction-radiation
problems and indicated generally good results. The wide band
model proves to be a powerful method of solving the radiative
transfer equation, yielding accurate results in a wide range of
applications.

The methods presented above provide the radiative properties
of gases for different spectral intervals—from a single spectral
value to an entire band of hundreds of cm™'. Hottel (1954)
developed a method termed the ‘‘weighed-sum-of-gray-gases’’
and provides emissivity and absorptivity data that included the
entire spectrum of gas radiation. Modest (1991) extended the
applicability of the total spectrum approach to any arbitrary
solution method, such as the P-N procedure. Although the
weighed-sum-of-gray-gas method has some restrictions, the
method represents a useful approach for thermal radiative trans-
fer problems, leading to major reductions in computational ef-
fort.

Nomenclature

The integration of the radiative transfer equation with respect
to frequency is very tedious due to the rapid spectral variation
of the absorption coefficient. An alternate method, the k-distri-
bution method, replaces the integration over frequency with an
integration over the absorption coefficient distribution function.
Goody and Yung (1989) presented a thorough analysis of the k-
distribution method, with particular applicability to atmospheric
radiation problems. Goody et al. (1989) generated narrow band
absorption coefficient distributions directly from line-by-line
calculations and show that the k-distribution method is in very
good agreement with line-by-line calculations. The k-distribu-
tion function can also be determined from band models, as an
inverse Laplace transform of the transmission function (Do-
moto, 1974). Lacis and Oinas (1991) developed a closed form
solution for the Malkmus model absorption coefficient cumula-
tive distribution function and applied the method to atmospheric
calculations, Soufiani and Taine (1997a) employed the k-distri-
bution method in connection with the Malkmus narrow band
model and provided explicit values for narrow spectral interval
absorption coefficients. Wide band intervals can also be em-
ployed in connection to the k-distribution method. Lee et al.
(1996) and Parthasarathy et al. (1996) used a numerical La-
place transform inversion of the effective bandwidth to calculate
a reordered spectral distribution of the absorption coefficient.
West et al. (1990) developed wide band k-distribution functions
directly from line-by-line calculations, while Wang and Shi
(1988) developed an analytical expression for the distribution
function resulting from the Malkmus model and the exponential
wide band model. Marin and Buckius (1996) calculated limiting
and approximate forms for the cumulative distribution function
resulting from the Malkmus model and the Edwards wide band
distribution. It is shown that the results provided by the Malk-
mus and Goody models when used with the Edwards exponen-
tial wide band properties are within 12 percent. The present
work uses the wide band cumulative distribution function
(Marin and Buckius, 1996) and the adjustments to the Edwards
band parameters to account for the band absorption differences
between models as suggested by Edwards and Balakrishnan
(1973).

The application of the k-distribution concept to total spectrum
calculations requires a suitable choice for the spectral blackbody
intensity. Denison and Webb (1993, 1995a, b) introduced a
function incorporating the local value of the blackbody distribu-
tion function together with the magnitude of the absorption
coefficient. Thus a “‘blackbody distribution function’’ for the
entire radiative spectrum was created, and the equation of trans-
fer is efficiently solved using the weighed-sum-of-gray-gas
method.

1

A = effective bandwidth, cm™
b = line halfwidth, cm™!
B = pressure broadening parameter, B =
wbld
C = coefficient in exponential wide band
formulation :
d = line spacing, cm™
f = distribution function
g = cumulative distribution function
i = intensity, W/m? sr
k = absorption coefficient, m*/g
L = layer thickness, m
N = number of elements in summation
R = ratio, R = Spax/ Siin
5 = line intensity, cm™'/(g — m™?)
= line intensity divided by line spac-
ing, m*/g

t
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Smie = minimum line intensity, m?/g
Smax = Maximum line intensity, m?*/g
T = temperature, K
u = mass path length, g/m?
w = weight factor for Gaussian integra-
tion
W = equivalent bandwidth
x = variable

Greek

o = integrated band intensity, cm™'/(g
— m*2)
v = wavenumber, cm™
Av = wavenumber interval, cm™
p = density, g/m®
T = transmissivity
w = bandwidth parameter, cm”~

1
1

1

Subscripts

0 = band center or band head
b = blackbody
e = equivalent
G = Goody model
i,i',j,j’ = summation parameters
L = layer thickness
M = Malkmus model
max = maximum
min = minimum
q = quadrature
wb = wide band
v = wavenumber dependent
Vo = band center (band head)
based
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The solution of the equation of transfer is more complex
when the medium is nonhomogeneous. The line-by-line method
is the exact approach to solve the equation of transfer. The
spectral changes in the absorption coefficient along a line of
sight must be incorporated, and the transmissivity for a line of
sight is then calculated using the multiplicative property. In
order to obtain an exact result, the radiative properties have to
be calculated at all adjacent locations, which is usually not
computationally feasible. In practice, the nonhomogeneous me-
dium is divided in a number of homogeneous layers, each with
constant properties.

Scaling techniques accounting for the nonuniform gas proper-
ties along a line of sight are popular in transport calculations
for nonhomogeneous media. The commonly used narrow band
scaling techniques are the Curtis-Godson (€G) (Godson, 1953)
and the Lindquist-Simmons (LS) (Lindquist and Simmons,
1972) methods. Both determine equivalent homogeneous pa-
rameters for the nonhomogeneous path transmissivity, provid-
ing correct dependencies for weak and strong line limits. Young
(1975a, b) extended the LS application of Goody and of Malk-
mus narrow band models to Doppler and combined Lorentz
and Doppler lines. Grosshandler (1980) developed a computer
program (RADCAL) to solve for the total intensity for a line
of sight using the data of Ludwig et al. (1973), the Goody
narrow band model and the CG scaling. Edwards and Morizumi
(1970) extended the scaling concept to wide band models, pro-
viding approximate relations for the band parameters. These
scaling methods effectively reduce the transport in nonhomoge-
neous media to the study of an equivalent homogeneous me-
dium, with important computational savings.

The k-distribution method is an alternate approach to solving
nonhomogeneous radiative transfer problems. Distinct k-distri-
butions are evaluated within the nonhomogeneous medium and
the integration of the radiative transfer equation is based on the
hypothesis that the distributions are spectrally correlated. This
means that a certain spectral interval yields the same value
for the absorption coefficient cumulative distribution function,
regardless of the local gas properties. The correlation of the k-
distribution assumption, termed the correlated-k method, has
been used for moderate temperature gradients and moderate
spectral intervals with good results for narrow band calculations.
Goody et al. (1989) and Lacis and Oinas (1991) successfully
applied the narrow band correlated-k method for atmospheric
nonhomogeneous media. Levi Di Leon and Taine (1986) ex-
tended the concept of separating a gas into several ‘‘fictitious
gases’’ (Ludwig et al., 1973) to the correlated-k method. For
each homogeneous layer, several k-distributions are developed
for the fictitious gases characterized by radiative gas transitions
with the lower level energy within a certain interval. Although
this method proves to be accurate, no major computational re-
duction, when compared to the line-by-line method, is reported.
Denison and Webb (1995c) applied the total blackbody distri-
bution function to calculations in nonhomogeneous media.

The current work attempts to enhance the efficiency of the
transport calculations in nonhomogeneous media while main-
taining accuracy. The correlated-k method for wide bands is
applied to highly nonhomogeneous media for both water vapor
and carbon dioxide. The results are compared to line-by-line,
scaling and blackbody distribution function methods. The com-
putational efficiency of each method is discussed. This work
also presents an efficient and accurate, simplified correlated-£
wide band approach.

Solution Methodologies

The solution of the radiative transfer equation for a nonhomo-
geneous medium with cold boundaries is given by the expres-
sion

Journal of Heat Transfer

Z(L) = f f ibx/(T(L,))_Q—TI/(le L)dL’dl/ (1)
Av VO aL,

where i(L) is the emitted intensity at location L, 7,(L', L) is
the spectral transmissivity between locations L' and L, and iy,
is the spectral blackbody intensity. With the nonhomogeneous
medium discretized into a series of homogeneous layers and
the spectral domain into a series of finite intervals, Eq. (1) can
be rewritten as

N N,
v

(L) = 2 AS s (T T (Lars L)

i=1 j=1

= 1w (L, L)1 Av, (2)

where N, is the number of spectral intervals and N, is the
number of homogeneous layers in the medium. The blackbody
intensity function is considered to be constant on the spectral
interval Av;. The absorption coefficient, considered constant
over small spectral intervals Av;, is calculated as a sum of the
neighboring rotational-vibrational transition effects. This ap-
proach is termed the line-by-line method and it is exact in
the limit as the spectral interval goes to zero. The line-by-line
procedure is computationally expensive since the transmissivity
results from the expression

L
TAL', L) = exp(~2 kyu;) (3)
o

where the absorption coefficient %;: has to be calculated as a
summation of the rotational-vibrational absorption line contri-
butions within the spectral domain for each j homogeneous
layer. u; = pp Ly is the mass path length for the jth layer.

From the data available in literature and extensive calcula-
tions performed using the detailed spectral information (Roth-
man, 1996), it is concluded that the absorption coefficient may
be considered constant for intervals of Av = 0.01 cm™'. The
infrared water vapor spectrum of 8000 cm™' necessitated the
calculation of 800,000 values of the absorption coefficient, each
resulting from the summation of many neighboring absorption
lines. Within a nonhomogeneous medium, the evaluation of the
spectral absorption coefficient has to be repeated for each set
of temperatures, pressures, and concentrations. These considera-
tions show the computational burden of the line-by-line method
and justify the effort directed towards the development of more
efficient algorithms to solve transport problems, such as band
models. Different methodologies to be applied in nonhomoge-
neous media are briefly reviewed below.

Narrow Band Scaling. Narrow band models replace the
spectral absorption coefficient with an equivalent absorption
over a spectral interval, generally of the order of several cm™'.

The transmissivity for a homogeneous layer is defined as
4)

where W is termed the equivalent bandwidth (equivalent width
for a single absorption line as defined by Malkmus (1967)),
expressed as a function of the mass path length u, the mean
line intensity-to-spacing parameter s = §/d, and the pressure
broadening parameter B = wb/d. Among the different models
developed the most accurate prove to be the statistical models
that assume a random position of the rotational-vibrational lines
within the band. The differences between various statistical
models reside in the line intensity distribution within the band.
The Goody narrow band model assumes an exponential distribu-
tion of the line intensity yielding an equivalent band width of

T = exp(—W)

su

We = —meee
RYZ4

1+ =

B

(3a)
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while the Malkmus narrow band model, assuming an inverse-
tailed exponential distribution, yields

B su
Wy == 1+4—=—-11.
" 2[\/ B ]

The narrow band models are used to solve for the radiative
transfer equation in nonhomogeneous media combined with the
concept of scaling. The scaling replaces a nonhomogeneous
medium with an equivalent homogeneous medium with modi-
fied band parameters. The scaling method employed here is the
CG technique, designed to determine equivalent band parame-
ters that satisfy the weak and strong line limits and correctly
approximate the other cases. The equivalent parameters are de-
fined as

(5b)

L L
(Su)e(L', L) = f sPdL" = 2 AR (661)
L' L
and
L L
f, Sde ! b Sj'Bj'uj'
B.(L', L) = = =& (6b)

L - L
L’ L’

Grosshandler (1980) develops a computer code (RADCAL)
designed to solve nonhomogeneous gas radiative problems by
applying the CG technique and band model parameters provided
by Ludwig et al. (1973). This work uses RADCAL and com-
pares the results with different methods. The narrow band model
database (Soufiani and Taine, 1997a, b) using the Malkmus
model is also used in connection to the correlated-k method, as
shown below.

Wide Band Models. Equation (1) can be solved with less
computational effort by using larger spectral intervals involving
entire rotational-vibrational bands, In this case, the solution uses
the wide band method with the effective bandwidth A defined
as

A= f [1 — exp(-W(v))]ldv, (7
Avyy,

where Av,, represents the wide band spectral interval. Edwards
and co-workers assume an exponential variation of the mean
line intensity-to-spacing parameter s as

Clv - I/ol)

w

S = Smax exp<— (8)

where sy, = a/w represents the maximum mean line intensity-
to-spacing value, « is the integrated band intensity, and w is
the bandwidth parameter. v, is either the band center (C = 2),
or the band head (C = 1), depending on the band profile.

The wide band model can be used to solve for emitted band
intensity from a nonhomogeneous medium, i,,(L) as

N,

(L) = Y, I T(LiNIA(L], L) = A(Ljs1, L)]  (9)

Jj=1

where A (L], L) represents the effective bandwidth for an equiv-
alent homogeneous layer between the locations L/ and L, and
ip, 18 the blackbody intensity at the band center or band head.
The total intensity is the sum of the individual band intensities.
The effective bandwidth A(L', L) is calculated using scaled
parameters of the form
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as developed by Edwards and Morizumi (1970). The wide
band scaling method is applied in this work, and the results are
compared with other methods.

Correlated-k Method. General radiative transport phe-
nomena in an absorbing, emitting, and scattering medium re-
quires explicit values of the absorption coefficient. The informa-
tion regarding the magnitude of % is lost in the band methods
presented above, and replaced with average transmission values
over different spectral intervals. The k-distribution method re-
moves this impediment. A spectral interval and a given state is
characterized by a k-distribution function f (k) and by a cumula-
tive distribution function g(k). The average transmissivity is
calculated as

0 3
= —1—f e kg = f e ™ fk)dk = f e Mdg (11)
Av Jay 0 0
where the first equality denotes the direct method to calculate
the transmissivity 7 over the spectral integral Av. The subse-
quent equalities apply the k-distribution concept by replacing
the integral over the spectral interval with an integral over the
distribution function f(k) and over the cumulative distribution
function g(k), respectively. g(k) can also be used to solve the
radiative transfer equation in nonhomogeneous media. For a
wide band spectral interval, Eq. (1) becomes

T

i L
iw(L) = Auw,,f f I (T(L")) —87 T(L', L)dL'dg. (12a)
o Jo oL
The integration process in Eq. (12a) uses the assumption that
all the different cumulative distribution functions within the
medium are spectrally correlated. This means that for each spec-
tral location, all different conditions yield the same magnitude
of the cumulative distribution function. This assumption is
termed the correlated-k method. Equation (12a) is generally
numerically integrated as

N, N,
fwp (L) = Aviy 2 { X i (T Ti (L1414 L)

=1 j=1

= 7i(Lj, L)]}w;  (12b)

where N, is the number of quadratures in the summation and

w; are the weight factors in the numerical integration. The trans-

missivity 7, (L], L) for a specific abscissa i is
L

Ti(Lf, L) = exp(=X ki) (13)

L

where j' is the summation parameter over distinct homogeneous
layers between the locations L] and L. The absorption coeffi-
cient k; ;. is obtained from the cumulative distribution function
corresponding to the state in layer L} and to the quadrature
number i.
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This work generates all cumulative distribution functions
from line-by-line calculations for spectral intervals of 25 (320
distribution functions for the entire spectrum), 50, 125, 250,
500, 1000, 2000, 4000 cm ™' and the entire infrared interval of
approximately 8000 cm™' (a single distribution required). The
application of the correlated-k approach in connection with nar-
row band models is extensively studied in the literature with
good results in highly nonhomogeneous media. This work ap-
plies this method using the Malkmus narrow band model data-
base (Soufiani and Taine, 1997a, b) and compares it with line-
by-line results. The excellent agreement between these methods
permits the use of the narrow band model database as a bench-
mark for high temperature calculations, where accurate line-by-
line information is not available. The cumulative distribution
functions are also generated from the exponential wide band
model as developed by Marin and Buckius (1996). The present
work also applies the blackbody distribution function approach.
The method calculates only one distribution function for the
entire infrared spectrum, for a given gas and state, by incorporat-
ing the variation of the Planck function together with the absorp-
tion coefficient distribution. The results of the blackbody distri-
bution function applied to nonhomogeneous media (Denison
and Webb, 1995¢) are presented in the next section. The black-
body distribution function method uses between 35 and 45 gases
for all the cases presented in this work, following the prescrip-
tions of Denison and Webb (1995c¢).

In addition to the use of these relatively complicated forms
of the cumulative distribution functions, a simplified approach
is developed based upon the pressure broadened limit. As the
temperature of the medium increases, the pressure broadening
parameter B increases for all bands of CO, and H,0, with the
exception of the rotational band of H,O. In the large pressure
limit, the Malkmus and Goody narrow band models provide a
step function of the absorption coefficient cumulative distribu-
tion function for a value of the absorption coefficient equal to
the average line intensity-to-spacing ratio within the narrow
band (Lacis and Oinas, 1991). This corresponds to an analytical
expression of the exponential wide band cumulative distribution
function

In (k/Smin)
ky = —7—, 14
g(k) I (R) (14)
with k in the interval [suin, Smax] and R = s, /s (Marin

and Buckius, 1996). Since this work is directed towards the
investigation of efficient computational approaches for high
temperature transport phenomena, the use of Eq. (14) in highly
nonhomogeneous media is considered. The exponential model
as described by Eq. (8) indicates that the mean intensity-to-
spacing ratio is spectrally monotonic within the wide band,
decreasing exponentially from the band center (band head) to-
wards the band wings. In the pressure broadened limit, the
monotonic decrease in mean-intensity-to-spacing ratio yields a
monotonic decrease of the absorption coefficient. In nonhomo-
geneous media, Goody et al. (1989) prove that k-distribution
functions that yield a monotonic variation in the absorption
coefficient are strictly correlated. Therefore, by using the cumu-
lative distribution function from Eq. (14), it is expected that
the errors introduced by the pressure broadening approximation
are reduced by the increased accuracy of the strict correlation
in nonhomogeneous calculations. Equation (14) is not only
simple, but it has the advantage of being analytically invertible.
In order to solve the radiative transfer equation expressed in
Eq. (1), the relationship & = k(g) is sought. Generally, the
existing expressions of the cumulative distribution function are
not analytically invertible, requiring a rather expensive numeri-
cal inversion process. Consequently, the use of Eq. (14) further
simplifies the calculations and reduces the computational bur-
den.

Journal of Heat Transfer

Results and Discussion

The calculations presented in this section include the infrared
spectra of water vapor and carbon dioxide and replicate condi-
tions related to combustion applications. The radiant intensity
is calculated using the exact, line-by-line method, as well as
approximate methods and models. Unless otherwise specified,
48 quadrature locations and weights have been selected for all
applicable numerical integrations. Present calculations and the
results of other researchers confirm that 48 quadratures or less
are sufficient to accurately quantify the phenomena, and a con-
stant number for all methods permits a relative comparison of
the computational efficiency.

The radiative transfer equation described by Eq. (1) is solved
using a spectral and spatial differencing scheme. The infrared
spectrum is divided into a number of subintervals, which depend
upon the particular solution method considered. The spectral
absorption coefficient or the cumulative distribution function is
then calculated for each spectral interval. Then the nonhomoge-
neous medium is discretized into several homogeneous layers
and the local absorption coefficient is calculated for the tempera-
ture, pressure, and concentration at the center of the homoge-
neous layer.

Line-by-line Results. One set of calculations considers a
mixture of water vapor and nitrogen for a line of sight with
total length L, composed of three adjacent isothermal layers
with 7, = 500 K, T, = 1000 K, and T3 = 1500 K. The partial
pressures of the components are maintained equal Py, = Py,

= 0.5 atm, since results in the literature suggest that the pressure
gradients are less important than the temperature gradient con-
tributions. The radiant intensity leaving the medium is calcu-
lated at both the high temperature and low temperature sides
of the medium and presented in Fig. 1(a).

The second set of calculations considers a mixture of carbon
dioxide and nitrogen for a line of sight with total length L,
composed of three adjacent isothermal layers with 7, = 500 K,
T, = 750 K, and T; = 1000 K. The partial pressures of the
components are the same as above, Pco, = Py, = 0.5 atm. The

radiant intensity leaving the medium is calculated at both the
high and low-temperature sides of the medium and presented
in Fig. 2(a).

The third set of results considers a mixture of water vapor
and nitrogen for a line of sight over a wide range of lengths.
The pressure is maintained constant, Py,o = Py, = 0.5 atm.

The medium is described by a parabolic temperature varia-
tion, between 500 K and 1500 K, and is divided into 20
equal-thickness homogeneous layers. The emitted intensity
is calculated for both the hot boundaries (1500 K)-cold me-
dium (500 K at the center) case and the cold boundaries
(500 K)-hot medium (1500 K at the center) case and pre-
sented in Fig. 3(a).

The line-by-line results are compared to the correlated-k
method. The distribution functions are obtained from a line-by-
line data base (Rothman, 1996) using different spectral inter-
vals, varying from 25 cm™' to the entire infrared spectrum (8000
cm™"), The spectral intervals are chosen from the band center,
or head, and proceeded to smaller and larger spectral values. It
is noted that the spectral locations of the different spectral inter-
vals do not significantly affect the magnitude of the results.
The Planck function is calculated in the center of each spectral
interval for which g(k) functions are created. The differences
introduced by the approximate methods are defined as

lline-by-linc - lappmximu[c method

(15)

Difference = 100 (percent).

lline-hy-linc

Figures 1(a) through 3(a) show the variation of the radiant
intensity leaving the medium with respect to the medium thick-
ness, based upon the line-by-line calculations (bold lines). The
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Fig. 1 Three isothermai layers (T, = 500 K, T, = 1000 K, T; = 1500 K)
of H,0-N, with partial pressures Py, = 0.5 atm and Py, = 0.5 atm. The

bold lines show the results obtained with the line-by-line database (Roth-
man, 1996}, the plain lines show the results obtained with the narrow
band model database (Soufiani and Taine, 1997a): (a) —emitted intensity
at the high and low temperature sides; (b) and (c¢) —differences intro-
duced by the correlated-k method {CK25-CK1000) at the high tempera-
ture boundary (b} and at the low temperature boundary (c).

notations CK25 through CK1000 in Figs. 1 through 3 refer to
the correlated-k method (the number represents the magnitude
of the interval over which the cumulative distribution functions
have been developed, in cm™'). Although additional calcula-
tions have been performed for the spectral intervals noted above,
Figs. 1 through 3 show only four correlated-k cases for clarity.
The differences introduced by the correlated-k method originat-
ing from intervals larger than 1000 cm™" have not been plotted.
For such intervals, the assumption of a constant Planck function
becomes inaccurate and the errors become much larger than
those reported.

Figure 1 shows the results obtained for the three isothermal
layer case of the water vapor-nitrogen mixture. The differences
introduced by the correlated-k at the high temperature and low
temperature boundary are presented in Figs. 1(d) and 1(¢),
respectively. It is observed that for both boundaries the differ-
ences introduced by the correlated-k method are generally
within 10 percent of the line-by-line results (bold lines), rela-
tively independent on the correlation spectral interval. At the
same time, the differences observed at the low temperature
boundary (Fig. 1(c)) are slightly larger than the differences
obtained at the high temperature boundary (Fig. 1(b)).

Figure 2 follows the same format as Fig. | for the three layer
geometry of carbon dioxide between 500 K and 1000 K. Figure
2(b) shows that, for the high temperature boundary case, the
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Fig. 2 Three isothermal layers (T, = 500 K, T, = 780 K, T, = 1000 K) of
a CO,-N, mixture with partial pressures Pco, = 0.5 atm and Py, = 0.5 atm.
The bold lines show the results obtained with the line-by-line database
{Rothman, 1996), the plain lines show the results obtained with the nar-
row band model database (Soufiani and Taine, 1997a): (a) —emitted
intensity at the high and low temperature sides; (b) and (c) —differences
introduced by the same methods as in Fig. 1 at the high temperature
boundary (b) and at the low temperature boundary (c).

correlated-k method up to 1000 cm™' yields good results, with
differences no larger than 9 percent. The differences are higher
at the low temperature boundary (Fig. 2(c)) for CK1000. It is
important to note that the carbon dioxide vibrational-rotational
bands are of the order of 500 cm ™', for which the correlated-k
method yields excellent results. Also, calculations with triangu-
lar and trapezoid temperature profiles (not shown) with similar
pressure, temperatures, and lengths have been studied with no
significant differences from those indicated above.

Figure 3 presents the results obtained when using a parabolic
temperature profile, between 500 K and 1500 K, with a mixture
of water vapor and nitrogen. The bold lines in Fig. 3(a) show
the emitted intensity for both the cold medium-hot boundary
and the hot medium-cold boundary cases using the line-by-
line calculations. Figures 3(b) and 3(c¢) show the differences
introduced by the correlated-k (bold lines). In both cases the
maximum differences introduced by the correlated-k method
are below 10 percent for spectral intervals up to 1000 cm™'. It
is noted that as the slab thickness increases, the differences
decrease.

The results presented in Figs. 1 through 3 show that the
correlated-k method can be accurately used for intervals up to
1000 cm™' for water vapor in highly nonhomogeneous media.
For correlation intervals of 1000 cm™', the maximum error
introduced by the correlated-k method for the cases investigated
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Fig. 3 Parabolic temperature profile of a H,0-N, mixture with partial
pressures Pyo = 0.5 atm and Py, = 0.5 atm. The bold lines show the

results obtained with the line-by-line database (Rothman, 1996), the
plain lines show the results obtained with the narrow band model data-
base (Soufiani and Taine, 1997a). (a) —emitted intensity by the high
temperature medium-low temperature boundary and by the low tempera-
ture medium-high temperature boundary cases; (b) and (c) —differences
introduced by the correlated-k method (CK25-CK1000) and the same
methods as in Figs. 1 and 2 for the cold medium-hot boundary case (b)
and hot medium-cold boundary case (¢).

is 13.6 percent, while the root mean square error is 6.1 percent.
The correlation of the cumulative distribution functions is some-
what less accurate for the carbon dioxide, but very good results
are obtained with intervals of correlation up to 500 cm™. For
this correlation interval, the maximum error introduced by the
correlated-k method is 6.6 percent, while the root mean square
error is 2.7 percent for the cases investigated. The results show
that when a high temperature medium radiates into a low tem-
perature medium, the errors obtained with the correlated-k
method increase. The spectral intervals for which the correlated-
k method yields good results correspond to a spectral interval
similar to a rotational-vibrational band interval. This fact im-
plies that the wide band model, specifically the exponential
wide band model, should be the attractive alternative to the
study of transport phenomena in nonhomogeneous media.

Model Based Methods. This section compares the results
obtained with various methodologies that are widely used in
engineering applications. The two narrow band approaches are
the correlated-k method using the database developed by Soufi-
ani and Taine (1997a) and the scaling method using the RAD-
CAL code (Grosshandler, 1980). The latter approach uses band
parameters based upon the database of Ludwig et al. (1973).
The wide band approaches presented below use the exponential
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wide band model with wide band scaling (Edwards and Mori-
zumi, 1970) and with the correlated-k method. These wide band
methods use the same band parameters as developed by Ed-
wards (1981). Finally, the blackbody distribution function ap-
proach is applied using the prescriptions of Denison and Webb
(1993, 1995a) with the nonhomogeneous approach presented
by Denison and Webb (1995c). It is noted that each approach
is based on different band parameters, originating from different
databases. Thus, the differences presented below result from
approximations introduced by each method and the differences
in the origin of the band parameters.

Figures 1 through 3 present the results (plain lines) obtained
for the same cases as above, using the narrow band model
database of Soufiani and Taine (1997a, b). The gas intensities
presented in Figs. 1(a), 2(a), and 3(a) are calculated using a
correlated-k approach over 25 cm™' intervals together with the
Malkmus cumulative distribution function formulation and the
database band parameters. Figs. 1(a) through 3(a) show that
the results obtained with the narrow band database are in very
good agreement with the line-by-line results, with an average
difference between methods of approximately 4 percent. The
largest differences are observed for large values of the thickness
at the low temperature boundary case of carbon dioxide in Fig.
2(a). The application of the correlated-k method using the
narrow band database is extended to larger spectral intervals of
up to 1000 em™' for water vapor and 500 cm™' for carbon
dioxide and compared to the results obtained for intervals of
25cm™'. Note that the differences (plain lines in Figs. 1 through
3) compare the CK25 results to the other correlated intervals
(and not the line-by-line results as indicated in Eq. (15)). The
plain lines in Figs. 1(®) and 1(c), 2(b) and 2(c), and 3(b)
and 3(c) show that the differences between CK25 (considered
as a reference so the difference is always zero) and CKI125
through CK1000 (CK500 for carbon dioxide, in Figs. 2(5) and
2(c)), although higher than for the line-by-line calculations,
are generally of the same order of magnitude as the line-by-
line-based correlated-k results. The only notable differences are
observed for small slab thicknesses, where the differences be-
tween CK25 and CK1000 can reach values of 18 percent for
the parabolic case in Figs. 3(b) and 3(c¢). It is concluded that
the narrow band database is a very reliable alternative to line-
by-line calculations. The availability of narrow band parameters
for a wide range of conditions, together with the computational
efficiency of the method, suggest the use of this database and
the correlated-k method over intervals of 25 cm™' as a bench-
mark for high temperature calculations. Such cases are pre-
sented below.

Figures 4 through 6 compare the line-by-line results with
scaling models, wide band correlated-k method, and blackbody
distribution function approach. The differences between each
approach and the line-by-line results are calculated with Eq.
(15) and plotted in Figs. 4 through 6. The scaling approaches
use the CG narrow band scaling (NBS) in RADCAL (Gross-
handler, 1980), and the wide band scaling (WBS) of Edwards
and Morizumi (1970). The wide band correlated-k distributions
(CKWB) as developed by Marin and Buckius (1996) using
Edwards wide band parameters, together with the recommenda-
tions in Edwards and Balakhrishnan (1973), are employed.
Thus, the integrated band intensity « and the bandwidth parame-
ter w are adjusted to compensate the differences between the
Edwards correlations and the effective bandwidth calculated
with the cumulative distribution function of Marin and Buckius
(1996). The simplified wide band correlated-k method (CKPB)
is also presented, where the cumulative distribution function
g(k) is the simple logarithmic expression (Eq. 14), regardless
of the local magnitude of the pressure broadening parameter.
The CKPB method uses the original wide band parameters de-
veloped by Edwards (1976). Finally, the blackbody distribution
function method (BB) is presented as prescribed by Denison
and Webb (1993, 1995a, ¢).
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Fig. 4 Three isothermal layers (T, = 500 K, T, = 1000 K, 7; = 1500 K)
of a H,0-N, mixture with partial pressures P, o, = 0.5 atm and Py, = 0.5
atm. Differences introduced at the high temperature boundary (a) and
the low temperature boundary (b) by the wide band correlated-k (CKWB)
method, the pressure broadened limit of the wide band correlated-k
(CKPB) method, the wide band scaling (WBS) method, the narrow band
scaling (NBS) method, and the blackbody distribution function method
{BB), all compared to line-by-line resuits.
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Fig. 5 Three isothermal layers (T, = 500 K, T, = 750 K, T; = 1000 K} of
a CO,-N, mixture with partial pressures P¢o, = 0.5 atm and Py, = 0.5 atm.

Differences introduced at the high temperature boundary (a) and at the
low temperature boundary (b) by the same models as noted in Fig. 4.
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Fig. 6 Parabolic temperature profiles between 500 K and 1500 K (bold
lines) and between 500 K and 2500 K (plain lines) of a H,O-N, mixture
with partial pressures Py = 0.5 atm and Py, = 0.5 atm. Differences in

the emitted intensity introduced by the same models as in Figs. 4 and 5,
for (a) the cold medium-hot boundary case, and (b) the hot medium-
cold boundary case.

The differences in intensity for H,O (Fig. 4) and CO, (Fig.
5) for the three-layer cases are presented. For the water vapor
case, it is observed that the differences at the high temperature
boundary (Fig. 4(a)) are all within 20 percent, generally the
approximate methods underpredicting the outbound intensity.
The differences are slightly higher at the low temperature
boundary (Fig. 4(b)), the maximum difference of approxi-
mately 35 percent being obtained with the narrow band scaling
(NBS) method for large values of the optical thickness. The
approximate methods yield the same range of differences and
systematically underpredict the radiant intensity at the low tem-
perature boundary. The same general observations are valid for
the carbon dioxide results in Fig. 5. The only notable difference
is that the narrow band scaling at the low temperature boundary
(Fig. 5(b)) yields an average difference that is larger than the
water vapor case, with a maximum value of approximately 40
percent for large values of the slab thickness.

Figure 6 presents the differences introduced by various meth-
ods compared to the line-by-line results (bold lines) for the
parabolic temperature profile of the water vapor-nitrogen mix-
ture between 500 K and 1500 K shown in Fig. 3. Figure 6(a)
shows the differences for the high temperature boundary and
low temperature medium case. The NBS method overpredicts
the emitted intensity for small and medium values of the thick-
ness and is accurate for large values L. Figure 6(b) presents
the differences in the cold boundary and hot medium case for
the same range of optical thicknesses. Similar trends are ob-
served for all the investigated methods, with the highest differ-
ences occurring for the narrow band scaling method. For these
cases, the correlated-k wide band calculations and all other
methods yield differences close to 13 percent, increasing to a
maximum of 26 percent. Figure 6 (plain lines) presents the
differences between the modeling methods and the correlated-
k results obtained with the narrow band model database (Soufi-
ani and Taine, 1997a) for high temperature calculations. A line
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Fig. 7 Three isothermal layers with T; = 500 K, T, = 1000 K, T; = 1500
K {bold lines) and with T, = 500 K, T» = 1500 K, T, = 2500 K (plain lines)
of H,0-N mixtures with partial pressures Py = 0.5 atm and Py = 0.01

atm, respectively, and a total pressure Py, = 1 atm, Differences between
the pressure broadened limit of the wide band correlated-k method
(CKPB) and line-by-line (bold lines) and between CKPB and narrow band
model database (plain lines) for (a) the high temperature boundary, and
(b) the low temperature boundary emitted intensity.

of sight of length L with a mixture of water vapor and nitrogen
with Py = Py, = 0.5 atm and a parabolic temperature profile
between 500 K and 2500 K is investigated. The results in Fig.
6 show that the narrow band scaling introduces the largest dif-
ferences, particularly for large values of the slab thickness at
the low temperature boundary case (Fig. 6(b)). The correlated-
k wide band calculations and all other methods yield differences
close to 14 percent and up to a maximum of 28 percent. For
all the approximate methods, the differences are slightly larger
for the 500 K through 2500 K case than for the 500 K through
1500 K case.

Wide Band Correlated-k Accuracy. The CKWB and
CKPB prove to accurately describe the emitted gas intensity in
highly nonhomogeneous media. The differences between these
wide band formulations (WBS included) and benchmark calcu-
lations are generally of the same order of magnitude as the
original wide band model (Edwards, 1976). The CKWB and
CKPB methods have the advantage of being applicable in scat-
tering media. The CKPB approach yields accurate results for
the cases investigated, even when the pressure broadening pa-
rameter is less than 1. This reasonable accuracy of the CKPB
approach results from the competing contributions of the de-
crease in accuracy by assuming the gas to be in pressure broad-
ened limit and the increase in accuracy due to the strict correla-
tion of a monotonic absorption coefficient in this limit.

Figure 7 considers the application of CKPB for lower pres-
sures. The investigation includes a water vapor-nitrogen mixture
with Py,o = 0.01 atm and Py, = 0.99 atm, and the line of sight
case considered in Fig. 1. Figure 7(a) shows the results ob-
tained at the high temperature boundary case, while Fig. 7(b)
refers to the low temperature boundary case. The low pressure
results are plotted together with the previous case (Puo =

Journal of Heat Transfer

Py, = 0.5 atm), and it is observed that the differences increase

as the pressure decreases for the hot boundary case. Differences
of up to approximately 30 percent occur for small values of the
medium thickness (larger for the high temperature boundary)
where the CKPB method overpredicts the emitted intensity. The
differences are within 10 to 15 percent for intermediate values
of the medium thickness. The differences in emitted intensity
at the low temperature boundary are lower than those for the
high temperature boundary. Figure 7 (plain lines) presents the
differences between the CKPB method and the narrow band
correlated-k method (Soufiani and Taine, 1997a) for a three
layer case with temperatures of 500 K, 1500 K, and 2500 K and
the same pressures as above. The results at the high temperature
boundary are on average within 20 percent difference, while
the results at the low temperature boundary generally underpre-
dict the emitted intensity by a maximum of 35 percent. The
overprediction introduced by approximating the gas properties
as those in the pressure broadened limit is compensated by the
underprediction introduced by the correlated-k method. It can
be concluded that the pressure broadened correlated-k method
applied to wide band intervals is a reasonably accurate approach
to such highly nonhomogeneous media for carbon dioxide and
water vapor.

Computational Effort. The CPU time required by each
method for the three layer case has been recorded and analyzed.
It is noted that the programs have not been optimized and en-
hancements in CPU time are surely possible. Thus, the results
are only comparative. The CKWB method is taken as the base
case, and all the other methods are compared to the CKWB
method. As previously noted, the number of quadratures, where
applicable and if not otherwise specified, is 48.

The most efficient algorithms are the WBS method, about
two orders of magnitude faster than the CKWB method. The
CKPB method follows with about one order of magnitude faster
than the CKWB method, due to the simplicity of the cumulative
distribution function and the analytical inversion of & = k(g).
The NBS method is approximately as efficient as the CKPB
method, while the BB method is comparable to the CKWB
method, primarily due to the fact that the distribution functions
in both cases are not explicitly invertible. The Malkmus narrow
band model correlated-k method is less efficient than the CKWB
(about two orders of magnitude higher) due to an increased
number of distribution functions required. In addition, the cu-
mulative distribution function describing the Malkmus narrow
band model (Lacis and Oinas, 1991) is not invertible. The line-
by-line approach proves to be the most inefficient, four orders
of magnitude slower than the CKWB approach, yet the most
accurate,

Conclusions

This work presents methods to solve the radiative transfer
equation in highly nonhomogeneous media for various spectral
resolutions. Each method is compared to the exact results pro-
vided by the line-by-line approach. The correlated-k method is
applied for different intervals over which the absorption coeffi-
cient distribution functions are generated, varying from 25 ¢m™
to the entire infrared spectrum. It is shown that, for the cases
analyzed, the accuracy of the correlated-k method is very good
for intervals up to approximately 1000 cm™' for water vapor
and 500 cm™' for carbon dioxide. This conclusion substantially
improves the computational efficiency of such calculations,
while preserving the accuracy. Since the intervals generally
coincide with the rotational-vibrational bands for the two gases
discussed, these findings indicate that the wide band models
and the correlated-k method provide an efficient and accurate
approach to solve thermal radiation transport phenomena in
nonhomogeneous media.

The line-by-line calculations (Rothman, 1996) are compared
to the narrow band model database (Soufiani and Taine, 1997a,
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b), and very good agreement between methods is found, This
conclusion permits the use of the narrow band model database
as an alternative benchmark. The results reported throughout
this work compare several methods with the line-by-line calcu-
lations for the temperature range where this data is available
and with the narrow band model database calculations for high
temperature calculations where line-by-line data is not avail-
able.

The band models investigated use different approaches to
nonhomogeneous calculations, namely, the scaling method, the
correlated-k method, and the blackbody distribution function
method. Band scaling methods introduce differences that vary
with conditions and optical depth. Both narrow band and wide
band scaling methods are considered— with relatively large dif-
ferences when compared to line-by-line calculations. The corre-
lated-k method is also applied to both narrow band models and
wide band models. As mentioned above, the narrow band model
database of Soufiani and Taine (1997a) is used to generate
narrow band cumulative distribution functions. The correlated-
k method combined with the exponential wide band model is
studied using the cumulative distribution function developed by
Marin and Buckius (1996). The results are in good agreement
with the line-by-line calculations for the cases considered. The
wide band correlated-k method introduces differences of the
same order of magnitude as the differences introduced by the
wide band model applied to a homogeneous medium. A simpli-
fied approach of the correlated-k method, using the limiting
form of the cumulative distribution function that is exact in the
pressure broadening limit, is extrapolated to a large range of
pressures. The simple logarithmic form and the analytical inver-
sion of this function decreased the computational time by one
order of magnitude when compared to the wide band correlated-
k method, without a major loss in accuracy.

This work suggests the need for the development of improved
wide band cumulative distribution functions in order to more
accurately and efficiently predict transport phenomena. The cal-
culations presented here show that the wide band correlated-k
approach is useful in highly nonhomogeneous media transport
analysis. The development of simple yet accurate functions to
account for wide band intervals can improve radiative heat
transfer analyses in such nonhomogeneous media.
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Schemes and Applications of
First and Second-Order Discrete
Ordinates Interpolation Methods
to Irregular Two-Dimensional
Geometries

This paper presents numerical schemes and comparison of predictions of radiative
heat transfer for the first and the second order discrete ordinates methods (DOM]I and
DOM?2 ) using an interpolation scheme. The formulations are followed by derivation of
numerical schemes for two-dimensional body fitted grids. With varying the optical
depths and the numbers of grids and ordinates, radiative wall heat fluxes by DOM1
and DOM?2 are calculated to compare with the exact solutions for three kinds of two-
dimensional enclosures (square, quadrilateral, and J-shaped) containing absorbing/
emitting and nonscattering media of known temperature with cold black walls. Emis-
sive power and radiative wall heat fluxes by DOMI and DOM?2 are calculated to
compare with zonal results for two-dimensional square enclosure containing ab-
sorbing/emitting and isotropically scattering medium of known uniform heat source
with cold black walls. The results of DOM1 and DOM?2 are in good agreement with
the exact solutions or the zonal results. DOMI gives more accurate results than
DOM?2 for most of the tested optical depths and the numbers of grids and ordinates.
These methods appear as powerful candidates of very versatile radiation analysis

tool. Their grid and ordinate dependencies are also discussed in depth.

1 Introduction

Among the many numerical methods of solving radiative
transfer equation (RTE), the discrete ordinates method (DOM
or Sy-method) is considered a potential and very promising
tool. Many variations of the DOM have been suggested in the
literature. Since the application of the Sy method to engineering
radiative heat transfer problems, notably by Hyde and Truelove
(1977), it has been implemented more and more widely (Five-
land, 1984; Truelove, 1987; Jamaluddin and Smith, 1988; Kim,
1990). The finite volume method (FVM) proposed by Raithby
and Chui (1990) is another kind of the DOM together with the
FVM of Chai-et al. (1994) that discretized angular domains
into a set of discrete directions over the entire sphere, where
all variables were assumed constant within each discrete angle.
In fact, the conventional DOM (hereafter referred to as CDOM )
and the FVM differ only in the way the angular discretization
of the RTE is performed. The FVM and the CDOM using
control volume-based spatial discretization have been success-
fully extended to general nonorthogonal coordinates (Chui and
Raithby, 1993; Chai et al., 1995; Fiveland and Jessee, 1995;
Giridharan et al., 1995).

Song and Park (1992) derived second order simultaneous
differential equations from the conventional discrete ordinates
equations including the general scattering term, which is named
here ‘‘second order discrete ordinates method (DOM2)."’ The
conventional DOM is called here ‘‘first order discrete ordinates
method (DOM1)’’ since it is a set of first order simultaneous
integro-differential equations. The DOM?2 decreases the number
of governing equations to half of DOM1 and the resulting equa-
tions of the DOM?2 are the second order parabolic differential
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equations. Cheong and Song (1995, 1996) developed and criti-
cally examined various solution schemes for the DOM2; they
recommended the exponential scheme with cubic interpolation
method (or simply interpolation method, IM) considering nu-
merical accuracy and grid dependence. The IM can also be
developed for the conventional discrete ordinates equations
(DOM1), and it allows discrete ordinates methods (both DOM1
and DOM?2) to be extended to irregular geometries, such as the
above mentioned FVM and CDOM can handle.

The IM is a conceptually simple scheme to apply to multidi-
mensional problems using not only nonrectangular grids but
also unstructured grids.

This paper presents the discretization equations of the DOM1
and the DOM2 with IM for general two-dimensional geome-
tries. In addition, comparisons of the DOM1 and the DOM2
results are made. Radiative wall heat fluxes are calculated for
three test enclosures (square, quadrilateral, and J-shaped) with
absorbing/emitting and nonscattering media of known tempera-
ture. Emissive power and radiative wall heat flux are calculated
for a square enclosure with an absorbing/emitting and an iso-
tropically scattering medium of a known uniform heat source.
The results are compared with the exact solutions or zonal
results, Their grid and ordinate dependency and other related
topics are investigated and discussed in depth.

2 Discrete Ordinates Formulations
The formulations of the first order and the second order dis-
crete ordinates methods are briefly given here.

2.1 First Order Discrete Ordinates Formulation
(DOM1). The RTE is replaced by a set of equations for a
finite number of ordinate directions §;,i = 1,2, ..., M, and
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the scattering term integral is replaced by a quadrature of order
M with appropriate angular weights W, as

=L + 5 (1)

where

M
S = (1 —wl, + f’— S LB, §)W,
s

=1

(2)

and where /; is the intensity at a position I for a direction §;;
B (=k + 0,) is the extinction coefficient; x and o, are the
absorption and the scattering coefficients; w is the scattering
albedo; and ®(§;, §;) is the scattering phase function of intensity
entering from §; and leaving to §;. The boundary condition at
a diffuse wall is given by

<y

fi8,<0

1
I,' = Elhw +

where ¢ is the wall emissivity, 7y, is the blackbody intensity of
the wall, and # is the unit inward normal vector from the wall.
The governing equation is first order, requiring only one bound-
ary condition for the emanating intensity for i~ §; > 0. Eq. (1),
together with the boundary condition (3), constitutes a set of
M simultaneous, first order, linear differential equations.

The ordinate §; and angular weight W, can be arbitrarily
obtained (Truelove, 1987). Among them, the conventional
method using Gaussian quadrature (Kim, 1990) is employed in
this study.

The local medium temperature may be obtained, when it is
not known, from the pointwise energy balance equation itera-
tively as

M
Y kW, —daxl, + g =0

i=1

4

where ¢ is the radiative strength of the heat source per unit
volume. Also, the radiative heat flux at a wall can be found by

Nomenclature

M

qy = Z(ﬁ'gi)livvi- (5)

i=1
2.2 Second Order Discrete Ordinates Formulation
(DOM2). The second order discrete ordinates equation for

an absorbing, emitting, and anisotropic scattering medium have
been reformulated from the first order RTE as (Song and Park,
1992; Cheong and Song, 1995)

1 & (1 0F .
——|=-=—)=F -P (6)
B os; \ B Os;
where P; is the source term given as
M2
. w 1 0 C;OF;
Pi=2(1 —wl, + 2 (—A,--F‘ + ———”—i> (N
=1 41 v ,B as,' ,8 aSj
In the above equations, the variable F; is defined as
Fo=1IF + 17 (8)

where I} and I7 denote the intensities to the positive and the
negative ordinate directions, respectively. While the first order
DOM solves for M discrete ordinates, the second order DOM
solves for M/2 ordinates. The set of discrete ordinates is made
by taking one out of every even-parity pair of ordinates (the
opposite-direction pairs). The number of equations is reduced
to half, while the order of them is increased to the second. The
A; and C; have been defined as follows:

[As] = [A°(§;, 8:)W)], 9
[Cyl = [Ty — 6] (10)

where the sum of weights W, over j is 2; 6, is the Kronecker
delta, w is the scattering albedo, T} is the entry of [§; — (w/
4m)B;]1"" and [B;] is [B°(8;, 8 )W,]. The quantities A° and B®
express scattering quantities and are defined as

Ao(gl, §,) = (D(gj, 5,) + (b(gj’ _§1)’ (11)
Bu(gj, §) = (I)(gjv $) — (I)(gj, —§;). (12)

A, B, C = matrices appearing in the for-
mulation of DOM2 (Eqs. (9)
and (10))
A°, B’ = scattering quantities defined
by Egs. (11) and (12)
D = width of square, m
E, = blackbody emissive power,
W/m?

E} = nondimensional emissive
power of the medium along a
centerline (x = 0.5 m) for
square enclosure, E,/dD

F = sum of opposite-direction in-
tensities, It + I, W/
(m?*: 8r)

G = difference between opposite-
direction intensities, I* — I,

W/(m?: Sr)

I = radiative intensity, W/
(m?- Sr)

I, = blackbody radiative intensity,
W/(m?- Sr)

L, = Lagrange polynomial bases
M = total number of ordinate di-
rections

Journal of Heat Transfer

il = inward unit normal vector at
the wall

P = source term for DOM2, W/
(m?-Sr)

g% = wall heat flux, W/m?

¢ = strength of radiative heat
source per unit volume, W/m’

I = position vector, m

S = source term for DOM1, W/

(m”- Sr)

s = spatial coordinate along a line
of sight, m

§ = unit vector into a given direc-
tion

T = a matrix appearing in the for-
mulation of DOM?2
W, = angular weights (i = 1,. .., M)
X, ¥, z = spatial coordinates, m
[ = extinction coefficient, m~
6y = Kronecker delta (1 when i = j,
0 otherwise)
e = wall emissivity
# = polar angle measured from the
positive z-axis

Downloaded 11 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright

k = absorption coefficient, m™'

u, £, n = direction cosines with x, y, and

z-axis, respectively

o = Stefan-Boltzmann constant,
W/(m*K*)

o, = scattering coefficient, m~

7 = optical path, [§ 8(s)ds

¢ = azimuthal angle measured
from the positive x-axis

® = scattering phase function

w = scattering albedo

Subscripts

B = boundary node
i, j, k = index for ordinate directions
IN = interpolation point
P = center node
w = wall

Superscripts
+ = positive direction
— = negative direction
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A variable G;, defined as I;7 — I;, can be expressed using

F; as
Mi2
1 8F
T, — 13
2 i g 6 (13)
When the wall is diffuse, the boundary condition for F; is
M2
1 8F
F, — sign (1+§) Y, (8; + Cy) =
P i 1) ﬂ a
[ — M2
= 2el,, + ~—— 3 Iﬁ-éjl[Fj + sign (i -§;)
T 0
M2
1 OF
X X (G + Cu) = ]W (14)
k=t B s

where the function sign denotes the sign of the argument. Note
that for nonscattering medium Eqgs. (7) and (14) become much
simpler since w = C; = 0.
The local medium temperature and radiative heat flux from
the wall can be obtained by
M2

S «FW;, — dnkl, + ¢ = 0, (15)
i=}
M2
= 2 (i-8,)GW,. (16)
i=1
3 The Interpolation Scheme
3.1 Discretization Equations for DOMI1. Consider a

line of sight in direction § passing through a nodal-point P as
shown in Fig. 1 (for simplicity, subscript i for the ordinate is
omitted hereafter). Eq. (1) is rewritten as

dl

— + BI = gS.

7 (17)

The source term § is approximated by the first two terms of a
Taylor series expansion about point P as follows (Raithby and
Chui, 1990):

S = S(s)—Sp+——) (s — As). (18)
ds

Given the boundary values Iy, Eq. (17) can be exactly solved
for Ip for constant 3, i.e.,
1 dS )
ﬂ ds /,

X [1 — e™#%(1 + BAs)]

Ip = Lye "% + Sp(1 — e™P2) —

(19)

where Iy is a nongrid value interpolated with its neighboring
values of I by a linear or higher order polynomial. Derivation
of Eq. (19) is similar to the finite volume formulation of Raithby
and Chui (1990). However, I,y is correlated in a different way
here. For the ordinate direction § as shown in Fig. 1, linearly
interpolated Iy is expressed as

1
In=2LIl-14+nm-1)

(20)
n=0
and cubically interpolated I,y is expressed as
3
In=2 LII-2+nm-1) (21)

n=0
where L,s (n =0, 1,...) are the Lagrange’s polynomial bases
(Press et al., 1986) and I(/, m) is the intensity for the nodal
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Fig. 1 Grid notation for discretization equation of DOM1

point P. Higher order interpolation is also possible, however,
it is recommended to use an odd-order scheme to equally treat
the right and the left grids. In the cubic interpolation method,
the interpolation uses two neighboring grid values to its left
(and right too) marked with circles along the line marked m —
1 (see Fig. 1) when they are available. However, when it is
shifted to the left boundary and only one left grid is available
for the cubic interpolation, it uses one left grid and three right
grids for the interpolation, and vice versa. As an example, the
Lagrange’s polynomial bases of linear interpolation (in Eq.
(20)) in the situation shown in Fig. 1 are expressed as

Al - él

0= AT (22a)
8l

L=—. 22b

N (22b)

The gradient of S in Eq. (18) can be obtained from the
following discretization equation:

d_s> _Sr=Su
ds /, As

where Sy is interpolated in the same way as L.

Expression for I, in terms of its neighboring values of I and
S is obtained when Eq. (20) (or (21)) and Eq. (23) are intro-
duced to Eq. (19). For instance, when linear interpolation is
used, the discretization equation for I, reads

(23)

IP = al-‘l,m—‘lll—l,m—-\ + al,m—lll,m-—l + b (24)
where
Al - 6l
Ai—im—1 = Al —ﬁAs’ (zsa)
5
Am—-1 = E € pa s (25b)
- 11 . Al — 6l
b= Sp(l - € ﬁAS) - ,EA_S [SP - Al Si—1m—1
6l

- ES"’"“] X [1 — e P2(1 + BAs)]. (25¢)

It is noteworthy that the linear or any other interpolated and
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discretized equations resume the original RTE when As is in-
finitesimally small. It means that the error due to spatial finite
gridding can be indefinitely decreased by taking finer grid. In
the DOM2, however, linear interpolation may not have this
property while higher order interpolation warrants it (Cheong
and Song, 1995).

If any, this scheme (called ‘‘first order discrete ordinates
interpolation method’’ and abbreviated as DOM1 with IM or
simply as DOM1 ) may be alternatively termed as *‘finite line”’
or ‘“finite angle method’’ since the photon balance is taken
along a segment of line and angle in contrast to the volume
balance taken in the finite volume method of Raithby and Chui
(1990).

3.2 Discretization Equations for DOM2. The governing
equation (Eq. (6)) and the boundary condition (Eq. (14)) in
direction § as shown in Fig. 2 can be written as,

O*F s
=F — P, 26
or? (26)
Z—F = sign (R-$)(F — S,) "
.
where 7 = f B(s)ds and
0
] Mi2
AW —251bw+'7r_z 7 SJ
i=1
Mi2
X | F; + sign (i+§) X, (6 + C)*— L OF, W;
k=1 B Os
Mi2
1
+ sign (ii*§) 2 Ci— or, - (28)

,66

Various solution methods for DOM2 have been examined by
Cheong and Song (1995, 1996). Among them the control line
approach (1996) has been adopted in this study since it can be
readily extended to irregular geometries.

Assuming a uniform source term P and constant extinction
coefficient 3, integration of Eq. (26) over a control line (from
is to in) as shown in Fig. 2(a) gives
95) _8_F> — FpAT + PAT =0
aT in is

or /, (29

where A1 = BAs = B(As/2 + As:/2) = (AT, + ATy)/2.
Given two boundary values Fyy (or Fys} and Fp, we can get the
exact solution of Eq. (26) and the exact gradient at the interface
in (or is) which is located at the midpoint. The obtained exact
gradients are introduced into Eq. (29), then the discretization
equation is given as

apFp = sinh {270V o + sinh { 272\ F,
2 2
ATZ

+ B(AT, + Ary) sinh (%’r—‘) sinh <T> (30)

where
ap = sinh (%) + sinh (%)

+ (AT, + AT,) sinh (%) sinh <%T—2> . (31)

Journal of Heat Transfer

{+1

(c)

Fig. 2 Grid notation for discretization equation of DOM2 for: (a) internal
nodes except near-boundary nodes; (b) near-boundary nodes; and (c)
boundary nodes

The values of Fjy and Fs are interpolated in the same way
as I,y with a third order polynomial (see Eq. (21)).

In the meanwhile, when the intergrid point IS (or IN) lies on
a wall, the control line for the internal grid points just near a
wall (see Fig. 2(b)) is increased to A1y + Ar,/2, and the
exact gradient at the wall is obtained as

OF\ _ Fp— P — (Fis — P) cosh (A7,) (32
or /, sinh (A7)
NOVEMBER 1997, Vol. 119 / 733
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In a similar manner to obtain Eq. (30), we can get F) for Fig.
2(b) as follows:

a8F, = sinh (A1) Fpy

+ 2 sinh (%)[ﬁ + (Fis — P) cosh (AT))]

+ 2PAT5 sinh (A7) sinh <%) (33)

where
B B As,
AT? = BAs? = B| As, + =) (34a)
a$ = sinh (A7) + 2 sinh (%)
B - . AT2
+ 2A77" sinh (A7) sinh T . (34b)

For the boundary point B in Fig. 2(c), Eq. (32) is introduced
to the boundary condition (27) with subscripts IS and P in Eq.
(32) replaced by B and IN and the expression for Fj is obtained
as

agFy = Fiy + Plcosh (A7) — 1] + S, sinh (A7) (35)
where

ag = cosh (A7) + sinh (AT). (36)

This scheme is named ‘‘second order discrete ordinates inter-
polation method’’ and abbreviated as DOM2 with IM or simply
as DOM2.

4 Results and Discussions

First, three two-dimensional (infinite in the direction normal
to paper) test enclosures as shown in Fig. 3 are considered to
compare the DOM1/IM and the DOM2/IM results with the
exact solutions; they are (a) square, (b) quadrilateral, and (c)
J-shaped infinite cylinders. All the media are absorbing/emit-
ting and nonscattering, and are maintained at a constant temper-
ature T, and all the walls are cold black. Since the medium
temperature is known, the exact intensity at any location is
given by

I(s) = Lwe™ + L,(1 — ™) (37)

where 1, is the blackbody intensity of the wall from which the
path length s is measured, and I, = 0T3¢/ is the blackbody
intensity of the medium. The exact radiant heat fluxes on the
walls are calculated using Eq. (37) and Gaussian quadrature
numerical integration.

The relative average error of radiant heat fluxes on a wall is
considered for comparison, which is defined as

1g% = Girue |/ Gtrue
Number of wall nodes

Error = Y,

node

(33)

”

where ¢, is the calculated value and gy, is the exact value.

The optical depth 7, defined as kD where D = 1m, is varied
as 0.1, 1.0, and 10. The S4, S5, and S3 methods are tried using
linear and cubic IM’s for DOM1 and cubic IM for DOM2
(linear IM for DOM2 is not recommended because of an inher-
ent error; Cheong and Song, 1995).

Table 1 and Table 2 show the relative average errors of wall
heat fluxes with DOM1 and DOM?2 (Eq. (38)) for the square
and the quadrilateral enclosures, respectively, and Table 3
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Fig. 3 Test enclosures containing absorbing-emitting media at constant
temperature (coordinates in meter): (a) square; (b) quadrilateral; and
(c) J-shaped

shows it on wall 1-1, wall 1-2 and wall 1-3 for the J-shaped
enclosure, with varying the optical depths and the numbers of
ordinates and grids.

On the whole, both of DOM1 and DOM?2 results agree well
with the exact solutions, and DOM1 gives more accurate results
than DOM?2 for most of the tested enclosures, the optical depths,
and the numbers of grids and ordinates. Improvement of accu-
racy from DOM2 to DOM! is prominent when the optical depth
is increased. When the optical depth is small, however, the
error is large for both of DOM1 and DOM2, and the difference
between them is not large. Note that the error is at most less
than 10 percent in the most complex geometry, i.e., J-shaped
enclosure. For most of them the error is usually a few percent
or even smaller.

In Tables | through 3, for the given number of grids, the
errors of DOM1 and DOM?2 are generally reduced as the number
of ordinates is increased for all the optical depths. Some excep-
tions to this finding are shown in Table 2 (quadrilateral enclo-
sure). When the optical depth is 10.0 and the number of grids
is 11 X 11 and 21 X 21, the errors of DOM1 and DOM?2 are
increased to some degree as the number of ordinates is increased
although the magnitude of error is as small as 0.1 to 3 percent.
The results of DOMI1 are in general more sensitive to the num-
ber of ordinates than those of DOM2.
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Table 1 Comparison of the relative average error of DOM1 with that of
DOM2, with varying the optical depths and the numbers of grids and
ordinates for square enclosure

DOM1 DOM1 DOM2

Optical depth | No. of grids | Sw (with (with (with
linear IM) cubic IM) cubic IM)

Sa 0.07647 002671 0.02843

5x5 Ss 0.07152 0.02372 0.0264%

Sg 0.05242 0.00709 0.02315

S4 005009 003076 0,02326

0.1 Hxil Ss 0.04466 0.02173 0.02732

Sy 0.02472 000959 005460

Sy 0.03952 0.03154 0.03219

21x21 Ss 0.03397 002352 0.02536

Ss 0.01377 0.01471 0.02849

Ss 0.05204 0.01975 0.03242

5x5 S¢ 0.04888 0.01490 0.03380

Ss 0.04093 0.00909 0.02424

S4 0.03761 0.02995 0.02967

1.0 xl1l Se 0.03258 0.01606 0.01781

Ss 002210 0.00960 0.01420

Sy 0.03458 0.03411 0.03275

21x21 Se 0.02497 0.01884 0.01808

Ss 0.01357 0.01305 0.01309

Sy 0.00454 0.00292 0.01187

5x5 Ss 0.00304 0.00202 0.00952

Ss 0.00299 0.00195 0.00969

Sa 0.00763 0.00334 0.03812

10.0 x1t Ss 0.00667 000325 0.04045

Sy 0,00590 0.00262 0.03905

Ss 0.00757 0.00349 003227

21x 21 Ss 0,00693 000255 003644

Ss 0,00540 0.00170 0.03499

Table 2 Comparison of the relative average error of DOM1 with that of
DOM2, with varying the optical depths and the numbers of grids and
ordinates for quadrilateral enclosure

DOM1 DOM1 DOM2

Optical depth | No. of grids Sw (with (with (with
linear IM) cubic IM) cubic IM)

Sa ©0,01842 0.02298 0.03826

5x5 Ss 0.02743 0.01583 0.03057

Ss 0.02745 0.01705 0.03028

Sq 0.02371 0.03277 0.07824

0.1 11x 11 Se 0.01346 0.02013 0.05233

Sg 0.01154 0.01362 0.04576

S4 0.02641 0.03886 0.05341

21 x21 S 0.01368 002186 0.02879

Se 0.00686 0.01455 0.02001

S, 0.02736 0.00829 0.01498

5x5 Ss 0.03039 0.00548 0.01316

Sg 0.03417 0.00195 0.01446

S, 0.01291 0.01364 0.01555

1.0 1x1t S 0.01541 0.00775 0.01034

Sa 0.02370 0.00326 0.00683

S4 0.01133 0.01758 0.01918

21x2] Ss 0.00897 0.01028 0.01141

Sq 0.01659 0.00740 0.00655

S, 0.00296 0.00162 0.00493

5x5S Ss 0.00279 0.00165 0.00460

Ss 0.00288 0.00169 0.00477

S4 0.00759 0.00352 0,02402

10.0 Tix 11 Se 0.00822 0.00387 0.02653

S 0.00882 0,00414 0.02790

Sa 0.00778 0.00204 0.02494

21x21 Ss 0.00859 0.00241 0.02819

Sa 0.00926 0.00286 0.03083
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Table 3 Comparison of the relative average error of DOM1 with that of
DOM2, with varying the optical depths and the numbers of grids and
ordinates for J-shaped enclosure

DOM1 DOM1 DOM2

Optical depth | No. of grids Sn (with (with (with
linear IM) cubic IM) cubic IM)

Ss 0.06309 0.08812 0.09440

11x5 Ss 0.04215 0.06021 0.08341

Ss 0.02764 0.03363 0.07428

Ss 0.06665 0.08894 0.09040

0.1 25x 10 S 0.04269 0.05984 0.08401

Sy 0.02131 0.02972 0.07090

Sy 0.07349 0.09133 0.09332

50 x 20 Ss 0.04546 0.06471 0.08046

] Ss 0.01941 0.03416 0.07052

Sa 0.02771 0.02624 0.02867

11x5 Se 0.02251 0.01843 0.02811

Ss 0.01661 0.00992 0.02810

Sy 0.02370 0.02627 0.02639

1.0 25x 10 Ss 0.01902 0.01834 0.02570

Ss 0.01316 0.00686 0.02451

S, 0.02460 0.02966 0.03201

50 x 20 Ss 0.01806 0.02162 0.02877

Ss 0.01045 0.01140 0.02686

S4 0.00513 0.00471 0.01147

11x5 Se 0.00362 0.00326 0.00970

Sg 0.00110 0.00076 0.00757

S4 0.00708 0.00575 0.02810

10.0 25x 10 Sg 0.00557 0.00423 0.02927

Se 0.00282 0.00157 0.02803

S4 0.00907 0.00704 0.03034

50 x 20 Se 0.00701 0.00487 0.03024

Sg 0.00342 0.00142 0.02871

Even for a coarse grid (5 X 5 for the square and the quadrilat-
eral enclosures and 11 X 5 for the J-shaped enclosure), DOM1
and DOM2 yield the good results for all the optical depths;
however, for the given number of ordinates, increasing the num-
ber of grids does not always exert a favorable influence on the
reduction of errors for all the optical depths in DOMI1 and
DOM?2. This unexpected phenomenon calls for further explana-
tion as follows.

Figs. 4 through 6 show the obtained nondimensional heat
fluxes along wall 1 for square and quadrilateral enclosures with
21 x 21 grids and along wall 1-1, wall 1-2 and wall 1-3 for a
J-shaped enclosure with 50 X 20 grids, using S3 method. The
wall heat fluxes are nondimensionalized with 6T (T, is constant
here). The solid lines denote exact wall heat fluxes. For all the
tested cases, the coarser grids are not useful in expressing the
rapid change of radiative heat flux near the corners where the
heat flux decreases sharply due to the two neighboring cold side
walls. When the number of grids is increased, the sharp change
near the corners is predicted very well. This may adversely
affect the magnitude of error, i.e., when the wall heat flux is
underestimated with coarser grid, finer grid with sharper drop
of heat flux may further increase the error. This explains the
aforementioned phenomenon.

If we turn to the results of DOMI1 in Tables 1 through 3, it
is observed that increasing the order of interpolation does not
always decrease errors. This phenomenon occurs more clearly
as the enclosure is more complex and the optical depth is
smaller. When the optical depth is small, intensity at a position
hardly affects that at another position which is not on the same
line of sight. Therefore, when the optical depth is small, increas-
ing the order of interpolation, which relates the neighboring
intensities more strongly, may give additional errors.

All the computational tests were performed on a CRAY YMP
C916/16512 machine with partial vectorization. DOMI1 re-
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Fig. 4 Nondimensional wall heat fluxes along the wall 1 using S with
21 x 21 grids for square enclosure

quired about 19 s of CPU time for both of the square and the
quadrilateral enclosures with 21 X 21 grids using Sy method,
and about 54 s for the J-shaped enclosure with 50 X 20 grids
using Sy method. The order of interpolation schemes did not
affect the computation time very much. On the other hand,
DOM2 needed about 9 s of CPU time for both of the square
and the quadrilateral enclosures, and about 64 s for the J-shaped
enclosure for the same conditions as DOM1. The solution time
of DOM?2 appeared to be more dependent on the number of
grids than that of DOMI. This was because the direct matrix
inversion method instead of the iteration method was used in
DOM?2 to attain well balanced solution time for all the optical
depths. From this, we can state that both of DOM1 and DOM2
have comparable computation speed. The computation time is
reasonably short already. For application to more complicated
grids such as unstructured grids, more advanced and efficient
matrix operation schemes are expected to further reduce the
computation time.

4
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Fig. 5 Nondimensional wall heat fluxes along the wall 1 using S; with
21 x 21 grids for quadrilateral enclosure
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Fig. 6 Nondimensional wall heat fluxes along the wall 1-1, wall 1-2, and
wall 1-3 using Sz with 50 X 20 grids for J-shaped enclosure (‘d’ is mea-
sured from the lower left corner along the wall 1-1, wall 1-2, and wall 1-
3 of the enclosure)

Secondly, to briefly demonstrate the capability of handling
scattering, an isotropically scattering problem is solved. Square
enclosure, as shown in Fig. 3(a), containing absorbing/emit-
ting and isotropically scattering medium (x = 1.0 m™' and o,
= 1.0 m™") of known uniform heat source (§ = 1.0 W/m?)
with cold black walls is considered to compare the DOM1 with
IM and the DOM?2 with IM results with zonal ones.

Figures 7 and 8 show nondimensional emissive power along
a centerline (x = 0.5 m) and nondimensional wall heat flux
(gw/4D) along wall 1, respectively. Zonal results are for 31 X
31 uniform control volumes and the others are for 31 X 31
uniform grid spacings and Ss method is tried. The results of
DOM]1 and DOM?2 are in good agreement with zonal results.
And this confirms the applicability of current schemes to scatter-
ing problems.

Mostly the cases of uniform temperature are tried here and
further complications are anticipated by introducing inhomoge-
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Fig.7 Nondimensional emissive power of the medium along a centerline
{x = 0.5 m}) using S for square enclosure containing absorbing/emitting
and isotropically scattering medium with g = 1.0 W/m?®,« =1.0m™", and
o, =1.0m™*
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neity of temperature, existence of heat source and more complex
geometries. However, it is very promising that both of DOM1
and DOM2 predict very accurately in the tested problems, and
the current schemes call for further application to more compli-
cated problems. While DOM? is slightly more complicated than
DOM1, the current schemes are simple, easy, and accurate. And
this is why the simple idea, especially DOM]1, can be extended
to more complex problems with a reasonable amount of effort.

5 Concluding Remarks

Formulations of DOM1 and DOM2 with IM are described.
Their discretization equations are derived for irregular two-
dimensional coordinate. Sample computations for three test en-
closures (square, quadrilateral, and J-shaped) containing ab-
sorbing/emitting media of known temperature with cold black
walls have been made. Radiative wall heat fluxes for DOM1
and DOM?2 are calculated to compare with the exact solutions
for various optical depths and numbers of grids and ordinates,
The results of DOMI1 and DOM2 agree well with the exact
solutions, and DOM1 gives better results than DOM2 for most
of the tested optical depths and the numbers of grids and ordi-
nates. The maximum error is smaller than 10 percent for 1000
grids or less, S, ordinates, and almost-transparent cases. When
the optical depth is greater than 1, the errors are roughly less
than 1 percent for all the tested cases. Complex geometry causes
greater error. The results of DOM1 and DOM?2 are generally
more accurate as the number of ordinates is increased; DOM1
is more sensitive to the number of ordinates than DOM2. The
difference between the results of DOMI1 is not large although

Journal of Heat Transfer

DOM1 with cubic IM gives the best results. The solution time
for both of DOM1 and DOM2 has been presented and the result
shows that both of them are computationally efficient.

Another sample computation for square enclosure containing
absorbing/emitting and isotropically scattering medium of
known uniform radiative heat source with cold black walls has
been made. Emissive powers and radiative wall heat fluxes for
DOMI1 and DOM2 are calculated to compare with zonal results.
The results of DOM1 and DOM2 agree well with zonal ones,
and this proves the possibility of handling scattering problems
with current schemes.

The two proposed methods are proved to be very reliable
and accurate candidates of future radiation analysis tool. With
DOM?2 being more sophisticated than DOM1, DOM1 and
DOM?2 are simple and easy to extend to more complicated
and multidimensional problems. More tests for nonuniform and
complicated effects are called for.
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The application of a new approximate technique for treating radiative transfer in
absorbing, emitting, anisotropically scattering media in two-dimensional rectangular
enclosures is presented. In its development the discontinuous nature of the radiation
intensity, stability of the iterative solution procedure, and selection of quadrature
points have been addressed. As a result, false scattering is eliminated. The spatial

discretization can be formed without considering the chosen discrete directions, per-
mitting a complete compatibility with the discretization of the conservation equations
of mass, momentum, and energy. The effects of anisotropic scattering, wall emission,
and gray-diffuse surfaces are considered for comparison with results available in
the literature. The computed numerical results are in excellent agreement with those
obtained by other numerical approaches.

Introduction

Radiative heat transfer is an important mode of energy trans-
fer in many different applications. Examples of such applica-
tions include, among others, pulverized-coal combustion, solid-
propellant and liquid-fueled rocket motors, gas turbines, and
diesel engines (Viskanta and Mengiig, 1987; Parry and Brew-
ster, 1991). Recently, analysis of liquid-droplet radiators for
use in space (Siegel, 1987), modeling of heat transfer from
highly porous ceramic foam inserts in combustion systems
(Yoshizawa et al., 1988), and determination of medium temper-
ature distributions and radiative properties via inverse tech-
niques (Subramaniam and Mengli¢, 1991) indicate a continued
growth in the areas of application. Accompanying this growth,
however, is the need to develop more computationally efficient
solution techniques to the radiation problem.

To model radiative heat transfer, many different aspects must
be considered. These include: (1) the effects of multidimen-
sional enclosures, anisotropic scattering, nonuniform and spec-
trally dependent properties; (2) the compatibility with grid-
generation routines for conservation equations of mass, momen-
tum, and energy as well as mass diffusion; and (3) the ability
to effectively use vector and parallel-processing techniques. It
is also well known that the coupling of radiation with other
modes of energy transport leads to extremely stiff problems,
requiring the use of sophisticated numerical techniques for ac-
celerating the convergence of the solution. Based on these as-
pects, which have been discussed by Howell (1988), only a
few mathematical techniques appear to be attractive for dealing
with complex radiation problems. A large portion of recent
research efforts on modeling of radiative heat transfer has been
on the use of the Pp-approximation (Menglic and Viskanta,
1986), the Monte-Carlo method (Howell, 1968), the discrete-
ordinates technique (Lathrop and Carlson, 1967; Fiveland,
1987), or the finite-volume methods (Raithby and Chui, 1990;
Chai et al., 1994). The elliptic nature, overall complexity, and
relative inaccuracy have curtailed the use of the P;-approxima-
tion—the P, -approximation is often used in interaction prob-
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lems. The Monte-Carlo method is computationally very inten-
sive, which has limited its application primarily to problems
with a specified temperature distribution within the medium.
The discrete-ordinates method has been applied to a wide vari-
ety of multidimensional (Kim and Lee, 1988, 1990) and non-
gray problems (Kim et al., 1991). However, the use of a large
set of ordinates may be computationally intensive in order to
satisfy stability criteria. The finite-volume techniques have
shown to give results of similar accuracy to that achievable by
the discrete-ordinates method. Both the discrete-ordinates and
the finite-volume techniques suffer from ray effects and false
scattering, as stated by Chai et al. (1994, p. 424).

Ray Effects and False Scattering

Chai et al. (1993) have presented an excellent discussion on
ray effects and false scattering associated with the discrete-
ordinates method. Ray effects occur as a result of discretization
of the radiation intensity in a finite number of directions; these
effects are independent of the employed spatial discretization
practice. As shown by Chandrasekhar (1960, p. 75, 83) for a
one-dimensional problem, it may be possible to eliminate ray
effects by utilizing the formal solution of the intensity. It ap-
pears, however, that such an approach may not be attractive
for multidimensional problems. The use of the formal solution
requires an interpolation of the extinction coefficient and the
source function across the computational domain.

False scattering or numerical diffusion is caused by the spatial
discretization practice. As discussed by Chai et al. (1993), its
elimination is difficult to achieve. False scattering occurs once
the spatial discretization is performed over domains where the
intensity or its slope is discontinuous; that is, a fraction of the
radiant intensity in one direction at one spatial location falsely
propagates into the radiant intensity in the same direction at
another spatial location. As a result, several investigators have
employed the Fredholm integral form of the equation of transfer
{Crosbie and Schrenker, 1984; Thynell and Ozisik, 1986,
1987). However, a complete elimination of the discontinuity
may not be achieved by using the Fredholm integral equation
because its solution often requires an evaluation of a singular
kernel; hence, ray effects or false scattering may occur ( Lathrop,
1971). It is thus evident that one should consider the discontinu-

Transactions of the ASME

Copyright © 1997 by ASME

Downloaded 11 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


mailto:umt@psu.edj

ous nature of the radiation intensity in order to eliminate false
scattering, which is the objective of our work.

Approach

In this work, a recently established method is applied for
treating radiative transfer within two-dimensional rectangular
enclosures. This approach has been employed to solve radiation
problems in one-dimensional slabs, spheres, and cylinders (Pes-
soa-Filho and Thynell, 1994, 1995a), and two-dimensional cyl-
inders (Pessoa-Filho and Thynell, 1995b). The formulation of
the solution considers three aspects. First and foremost, a careful
account is made for the discontinuous nature of the radiation
intensity. Second, since the radiative transfer problem is first
order, an integration along the line of sight of the equation of
transfer is utilized. By exploiting this feature, stability problems
inherent in many numerical schemes are eliminated. Third and
finally, the set of discrete ordinates is defined by Gauss-Leg-
endre quadratures, which are used to evaluate solid-angle inte-
grals that define quantities of practical interest—namely, inci-
dent radiation and radiative heat fluxes. In general, the choice
of quadratures is arbitrary (Modest, 1993).

Analysis

Mathematical Formulation. The applicability of the pro-
posed approximate technique is considered for a rectangular
enclosure containing absorbing, emitting, anisotropically scat-
tering constituents distributed nonuniformly throughout the en-
closure as shown in Fig. 1. The boundaries are opaque and
diffuse. The temperature of the medium and bounding surfaces
are known or specified via an overall conservation of energy.
For simplicity, we assume that specular reflections effects are
negligible and that the scattering phase function can be repre-
sented by a finite series in terms of Legendre polynomials.

Nomenclature

The mathematical description of the radiation problem is then
specified as (Ozisik, 1973)

[sin # cos ¢ ﬁ + cosG2 +(k+o,) [ I(y,2,6,¢)
dy 0z

=(k +0,)8(y, 2,8, ¢), (1)

with boundary conditions given by
I'(3,0,0,0) = . LIT(y, D] + (1 - €)g; (y.0)/m, (2a)
17(0,2,0,¢) = &L[T(0,2)]1 + (1 — €2)q; (0,2)/m, (2b)
I"(y, L, 0, @) = & [[ T(y, L)) + (1 ~ €3)q; (v, L)/m, (2¢)
I™(L,,2,0,¢) = eI T(L,, 2)]1 + (1 — e gy (L,, 2)/m. (2d)

The source function S(y, z, 6, ¢) for anisotropic scattering is

S()’- Zs 0’ ¢) = (1 - w)Ib[T(ya Z)]
N, 2 P

+412ajf f P;{cos 0 cos 8’
7rj=0 0 0

+ sin @ sin 8’ cos (¢’ — $)1(y, z, 0", ")
X sin 8'df’de’. (3)

The various terms specified in Eqs. (1) —(3) are defined in the
nomenclature,

Formulation of Approximate Solution. Detailed develop-
ment of the approximate solution commences by examining
Fig. 2. In this figure, the radiant energy streaming towards the
point located at (y, z) is split into eight solid-angle regions. In
each of these regions, the intensity is continuous and its deriva-
tive with respect to either the polar or azimuth-angle is continu-
ous. The use of eight different regions is chosen such that the

a; = amsotroplc—scattermg

P; = Legendre polynomial of

6 = polar angle

coefficient in phase func-
tion

B1, B2 = backward scattering
phase functions of Kim
and Lee (1988)

F1, F2 = forward scattering phase
functions of Kim and
Lee (1988)

GO o) = [ [T 1(y, 2,6, $)
X sin #dfd ¢, incident
radiation

I(y, z, 8, ¢) = radiation intensity
I, = blackbody intensity
Iy, = intensity in direction

from corner at (y = 0, z
= (), see Fig. 5
Iy, = intensity in direction
normal to surface at z =
0, see Fig. 5
width of enclosure
height of enclosure
order of scattering phase
function
N,, N, = number of nodes in y and
z-directions
Ny, N, = number of discrete ordi-
nates over polar and azi-
muth angles

i

Bk
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order j

o= [ [T 1(y, 2, 6, )
X cos ¢ sin® §dfd P, net
heat flux in y-direction

gy, 2) = f:” [ 1y, 2,6, ¢)
X cos 6 sin 8dfd ¢, net
heat flux in z-direction
S(y, z, 8, ¢) = source function
T = temperature of medium
T = surface temperature of
wall, see Fig. 1
Wa, W, = weights in quadrature
y = physical coordinate in y-
direction
z = physical coordinate in z-
direction
[ = extinction coefficient
by, 6, = distance defined in Fig.
4 and 5, respectively
Ay = L,/(N, — 1), cell width
in Figs. 4 and 5
- Az = L J/(N, — 1), cell height
in Figs. 4 and 5
Ay, = angle defined by Eq.
(9d)
€ = emissivity

x = absorption coefficient

= cos 8
U = = cos 8%, defined for
= 1 in Fig. 3
& = mth zero of Legendre
polynomial

0, = scattering coefficient
¢ = azimuth angle
w = scattering albedo, ¢,/8

Subscripts
i, j = spatial indices
& = contribution from kth
region of Fig. 2
m, n = solid-angle indices

y = y-direction

z = z-direction
1, 2, 3, or 4 = quantity of bounding wall

Subscripts

+ = forward (+) and
backward (—) directions

" = angularly interpolated
quantity

~ = spatially interpolated
quantity

NOVEMBER 1997, Vol. 119 / 739

Downloaded 11 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Wall3

L, [Wall2 Wall 4

i

Fig. 1 Schematic diagram of system considered

forward and backward heat fluxes can be determined within the
medium. If the net heat fluxes are needed only along the
bounding surfaces, then it is possible to employ four different
regions by collapsing each of regions 1 and 8, 2 and 3, 4 and
5, and 6 and 7 into one region, respectively. Continuity in the
intensity is required in order to accurately perform numerical
solid-angle integrations of the incident radiation and the net
radiant heat fluxes as well as the forward and backward radiant
heat fluxes. Therefore, the temperature and radiative properties
must be continuous along each surface and within the medium,
and the medium must not contain line or point sources, which
could be the case in the corresponding neutron transport prob-
lems. To limit the formulation, a detailed development is pre-
sented for only region 1 shown in Fig. 2. In this, as well as in
the other seven regions, Ny polar angles are specified as cos 8,
= U, m = 1, ..., Ny, and N, different azimuth angles ¢,, n
=1,..., N, are specified. Such a specification requires the use
of an Ng-point quadrature for the polar angle integration, and
an Ny-point quadrature for the azimuth-angle integration. These
points are selected based on the zeros of the Legendre polynomi-
als, &,,, which are subsequently shifted onto these angular inter-
vals following standard procedures (Abramowitz and Stegun,
1972). Figure 3 shows the specification of the angles involved
for a single direction of the intensity. For region 1, the angular
directions are specified by

bp = (L + &4, pm = (1 + E)(1 = p)/2 (4a,b)

uhy = cos [tan~! (y/z cos ¢,)]. (4c)
That is, 0 = ¢ =< 7/2 and uy, = u =< 1. Overall, there are N,
X N, discrete directions in each region for a total of 8N, X Ny
discrete directions at each point within the medium. Further-
more, these directions are different at each point within the
medium as well as along the bounding surfaces. The reason for
using Gaussian quadratures over other numerical integration
techniques, such as project-invariance techniques, is related to

/ 7
< ~—
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N, 4 5 -
N i
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Fig. 2 Definition of the eight angular regions
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i-1j ij
i-1,j-1 ij-1
/ -
Q" (3 /(mn e
3
4' y

Fig. 3 Specification of various angles employed in region 1 of Fig. 2.
Node (/, j), shown above, corresponds to position (y, z) in Fig. 2.

the fact that for single integrals they will exactly integrate a
polynomial with the least number of points.

The next step is to solve Eq. (1) over a discretized domain.
Figure 4 shows four nodes of Fig. 3 in the ¢-plane. Equation
(1) is integrated along the line of sight within this discretized
domain in a direction specified by the polar and azimuth angles
(Lathrop and Carlson, 1967). By considering this discretized
domain, rather than an integration all the way from the wall to
the point at (y, z), one should be able to reduce the computa-
tional effort. The solution to this integration may be approxi-
mated as

]ijmn = exp ( - BijAsmn)I_ijmn + ‘STt‘jmn[] - exp( - BijAsmn)] . (5)

However, the integration yielded an unknown intensity 7;,,, and
an unknown source function Sj,,. I.. must be approximated
over both the spatial and directional domains (in the direction
of Iy..), whereas §j,, requires only a spatial approximation.
First, we outline the spatial approximations.

Spatial Interpolation. If the intensity 7;-,,,,, is located be-
tween (i — 1,j — 1) and (i, j — 1), as shown in Fig. 4, then
the spatial interpolation is straightforward and represented by

By =18; + (1 =8B -1 + 6,8:,-11/2

‘STijnm = {Sijmn + (1 - 6y)Si—l.j—~l.mn + 6ySi.j—l,mn]/2 (6b)

(6a)

fijnm = (] - 6y)]~i—l,jfl,nm + 6yi;,j—l,ll111 (6C)
DSy = Azl i, (6d)
S A 1 - 3111 2
g =1 - 220 = tw) (6¢)
AZ ,umn cos ¢"
i-l,j Ay sec ¢ ij
, ______________
| Iijmn |
| |
| b
Az : 7: Lj-l.mn // : Ilj 1mn
|
1 |

i-1j-1

Fig. 4 Spatial interpolation of the intensity ﬁ/,,.,. in terms of the intensities
II—|.[»1.mn and ll.l—1,mn

Transactions of the ASME

Downloaded 11 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



If the intensity I, intersects the vertical line between nodes
(i—1,jyand (i — 1,j — 1), shown in Fig. 5, then the intensity
at node (i — 1, j) may not be defined in the direction of I,
(at node (i, j)). This may occur for the larger values of the
polar angle. As discussed by Pessoa-Filho and Thynell (1995b),
interpolation is the preferred approximate technique for the
evaluating of J,,, but it must then be replaced by an extrapola-
tion resulting in a loss of accuracy. Namely, the intensity at
node (i — 1, ) is extrapolated into an angular interval for which
it is not defined. To avoid extrapolation in this work, a bounding
intensity I, is calculated. The bounding intensity of region 1
is determined by integrating Eq. (1) from the lower-left corner
to the position specified in Fig. 5 along the line of sight. Al-
though the employed expressions are not included here, they
involve a summation of spatially interpolated values of the
source function. This is clearly an added complexity, but it is
needed to avoid extrapolation. Equivalent expressions to those
specified by Egs. (6) are developed and utilized in the interpola-
tion; they are not defined here.

Angular Interpolation. In addition to interpolation over
the spatial domain, angular interpolation is also performed to
increase the accuracy of the results. For example, the interpola-
tion over the angular domain is required to specify the intensities
atnodes (i — 1,j — 1) and (i,j — 1), shown in Fig. 4, in the
direction of the intensity [, at node (i, j). Such an interpola-
tion is performed using a quadratic polynomial. To obtain the
bounding intensity I3, in direction of I, at node (i, /), a normal
intensity Iy, is introduced. It is computed by solving Eq. (1)
from the bounding wall to the point specified in Fig. 5 along
the spatial grid with § = 0. Finally, a linear interpolation involv-
ing I, and Iy, are used to obtain an approximate value of the
bounding intensity in direction of [, at node (i, j).

Inspection of Eq. (5) reveals the following. First, an iterative
use of Eq. (5), coupled with the corresponding equations for
the other seven angular intervals, must be performed. The use of
these equations does not require a need for satisfying a stability
criterion. All the terms appearing on the right-hand side are
positive. Thus, it is possible to select the physical dimensions
of each cell independent of the discrete directions given by
(thwns @®n) and it offers an improved compatibility with grid-
generation routines for solving the conservation equations of
mass, momentum, and energy. Second, the use of mean beam
lengths are not required. Instead, actual physical paths are em-
ployed. Third, the approximations of the intensity I, and
source function S}, do account for differences in the direction
as a result of the variation in the polar and azimuth angles with
position.

Solution Procedure. In order to obtain a solution to the
intensity, an iterative scheme must be employed. In this work
a marching procedure is utilized. For intensities within regions
1 and 8, I; and I;, respectively, it starts at the bottom surface
by neglecting the incident intensities (g, (¥, 0) = 0). The next

i-1,j-1

Fig. 5 Definition of intensities used in the spatial interpolation along the
vertical direction of a cell

Journal of Heat Transfer

step is to solve for the intensities along the plane j = 2, and
then continues until the incident intensities are solved for along
the top surface. Simultaneously, the intensities within the other
six regions are computed and the source function is updated.
The iterative scheme continues until convergence is established.
In this work, it is specified when

Z 611:1'171’1/11']':1111 < 10 -6 N

i

(7)

where 67 represents the change in the intensity from one itera-
tion to the next iteration. Once the convergence is established,
the incident radiation and net heat fluxes are, respectively, com-
puted from

8
G; = 2 Gu, (8a)
k=]
4 8
Gy = 2 Goas — 2 ki (8b)
k=1 k=5
6
Qeij = 2 qrkij — Z 2 kijs (86)
k=128 k=3
where
N N
T 4
GkU = Z 2 WHA/'Lku Z "lekzjmu’ (9(1)
n=] m=1
T Nv/‘ Ny
q‘\ukl:i = 2 "VHAP'ku Z VVm]kijnm(1 - Hl%tjnm)”z cos d)m’ (9b)
n=1 m=1
7 N‘I’ N{I
qz.ki/’ = _4— 2 WnA,u)kn Z ]/lekijmnﬂkijmn» (96)
n=1 m=1t
(1~ up)2, k=1,4,5,8
A/ukn = . (9(1)
M2, k=2,3,6,7

Discussion of Results

To assess the accuracy of the above outlined approximation,
several different cases are considered. The first case illustrates
the angular variation of the radiation intensity in cases of both
isotropic and anisotropic scattering. The second case considers
a cold, purely absorbing medium contained in a rectangular
enclosure whose bottom surface emits radiant energy, whereas
the other surfaces are nonemitting. The third case deals with
effects of scattering, including both isotropic and anisotropic
scattering. The fourth and final situation involves the effects of
surface reflection of the walls and an anisotropically scattering
medium. In the following discussion, F1 and F2 denote forward
whereas B1 and B2 represent backward scattering phase func-
tions with coefficients g;, j = 0, ..., N,, listed by Kim and
Lee (1988); they are not reproduced here. F1 involves thirteen
coefficients (N, = 12 in Eq. (3)), F2 involves nine coefficients,
B1 involves six coefficients, and B2 involves three coefficients
in the expansion of the scattering phase function. The consid-
ered cases were executed using single precision in FORTRAN.

Figure 6 illustrates the angular variation of the radiation inten-
sity at three selected points along the vertical line at y = L,/2.
In this case, emission occurs along the bottom surface (f,, =
1), whereas all other surfaces are nonemitting. The optical di-
mensions are SL, = BL, = 1, the medium is purely scattering
(w = 1), and all surfaces are black. This situation was solved
by using a uniform spatial discretization of N, X N, =5 X §
and an angular discretization of Ny X Ny = 6 X 6. Inspection of
the results shown in these figures reveals that first, the intensity
distributions possess discontinuities at all three spatial locations.
For example, in Fig. 6(a), which shows the distribution at the
bottom surface, there is a sharp discontinuity in the plane where
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LB L L R appears that the intensity within each region is a smoothly vary-

(a) —o ing function. However, the use of second-order interpolating

fyandly polynomials may be inadequate in some cases; for example, the
Zf‘z ) slope of the intensity 1, in Fig. 6(b) varies considerably in both
y=L/ . cases of isotropic and anistropic scattering. In addition, higher-
$=74.75 order discretizations in both spatial and angular domains were
utilized but the predicted changes were only minimal.

Table 1 shows the convergence of the incident radiation at
several selected points within and at the boundary of a purely
absorbing medium with unit optical width and height (8L, =
BL, = 1). The bottom wall has a uniform temperature with 7,
= 1, whereas the other walls are at a zero temperature. The
four bounding walls are black. This case is considered for two
N P R R, reasons. First and foremost, it is the most difficult case to deter-
1.0 05 0.0 0.5 1.0 mine accurately since the solution depends to a large extent on
interpolated intensities. That is, there are no sources of radiant

L

-
o

e
|
!
x

o
=N

Isotropic Scattering

<
S

+Phase Function F2

Intensity IK(y, z, ¢, 1)

(=
(o]
||;§)|1;r||(||

P S ORI 00 N TSI UK TN S N N N S N I WA T

= cos 8 energy within the medium and the intensity is a highly discon-
ISR I LIS tinuous function. Second, highly accurate results of the incident
10 z=L Phase Function. diati b rated fi dir erical integration

r z=Lj2 E2 ] radiation can be generated from a direct numeric tegra
I y=Lj2 of the solution to the intensity. The ‘‘exact’” results shown in
~ 08 ¢=7475° . the bottom row of Table 1 were generated by integrating the
;f L (b) solution to the radiation intensity using a 20 point Gauss-Leg-
¥ 0.6 F endre quadrature. The convergence of the results was assessed
3 i using a uniform spatial discretization involving either 5 X 5,
E L 11 X 11, or 15 X 15 nodes in the horizontal and vertical direc-
'z 041 tions (N, X N,). Similarly, the number of nodes in the polar
g [ Lsoronic (Np) and azimuth (N,) directions within each of the eight re-
02 Scm;mg gions defined in Fig. 2 was varied from 2 X 2 to 12 X 12. Hence,
b o= o the largest system involved approximately 259,000 unknown
0.0 intensities. In the case of a 3 X 3 directional discretization,
A there are 72 unknown intensities at each grid point within the

medium in addition to the required bounding and normal intensi-
ties Iy; and Iy, respectively, defined in Fig. 5. Examination of
Table 1 is first performed with respect to the number of angular
T directions considered. Clearly, as the number of angular direc-

—r T
10 z=1, i e tions is nearly doubled from 8 X 8 to 12 X 12 in each angular
& y=Lp2 h region of Fig. 2, the numerical results of the incident radiation
_ 08 ¢=7475 Phase/Function changed only in the third or the fourth decimal place. The largest
3 L (o) F2 i change occurred, as expected, when the number of angular di-
g F ] rections increased from 2 X 2 to 3 X 3. In the case of 3 X 3
106 ] angular directions, results within about 1 percent of the ‘‘exact’
o ] ] be obtained
L . el results can be obtained.
? 04 r Isotropie~f 7 However, increasing the number of spatial nodes does not
8 - Smm"“?? ] imply that the results should converge towards the ‘‘exact”
= 02 F Ve N results, In fact, the case involving 5 X 5 spatial nodes is in
L s ] better agreement with the ‘‘exact’’ results than those obtained
0.0 Iand I 52 A 5=

1.0 05 0.0 05 1.0 Table1 Convergence of incident radiation at selected points for a cold,
-i Y . i . absorbing medium with gL, = 8L, = 1 and bounded by black boundaries.
Emission occurs along the bottom wall, /,; = 1, and all other walls are

i =cos@ b
at zero emissive power.
Fig. 6 Angular distribution of the radiation intensity aty = L,/2, ¢ =
74.75° and three vertical points: (a) z = 0, (b) z = L,/2, and (¢} z = L,. G/An
Emission occurs from the bottom surface, whereas the other surfaces Ny =N, [Ng =Ny O5Ly05L;) (0SLy,L;) | (0.L,/2) | (0,L;)
are cold (¢ =1, © =1, fL, = pL, = 1). 2 0.11231 | 003749 | 007121 | 0.02858
3 0.11646 | 0.03858 | 0.07362 | 0.02953
) ) o 5 4 0.11812 | 003830 | 0.07521 |0.03015
w = 0.In Fig. 6(c), the discontinuity between /, and I, near y = 8 0.11743 | 003828 | 0.07504 | 0.02078
0.47 is caused by differences in the specified boundary condition ) 0.11747 | 003829 | 007507 | 0.02981
along the bottom wall (y = 0) and the left wall (z = 0). The 2 0.11225 | 0.03730 | 0.06901 | 0.02852
corner at y = 0, z = L, does not cause a discontinuity in the 3 0.11666 | 0.03837 | 0.07303 | 0.02981
distributions between I; and I,. Second, in Fig. 6(a) and Fig. 11 4 0.11853 | 003803 | 0.07490 |0.03033
6(c), the forward intensities I, and I, and backward intensities 8 0.11746 | 0.03800 | 0.07408 [ 0.02966

I, and I, are, respectively, uniform, as required by the assumed 12 0.11791 | 0.03801 | 007414 | 0.02990
diffuse surfaces. Third, although the optical dimensions are only 2 0.11224 | 0.03720 | 0.06825 | 0.02850
in the intermediate range, back scattering is readily observed 3 0.11665 | 0.03833 | 0.07300 | 0.02981
and it produces the contribution to the intensities /; and I, in 15 4 011867 | 003798 | 007473 | 0.03037

] 0.11779 | 003796 | 007338 | 0.02975

Figs. 6(a) and (b). Fourth, differences in the assumed scatter-
ing phase functions are noticed both in the forward and back-
ward directions of the intensity. Finally, in the cases shown it

-
~

0.11815 0.03796 0.07344 | 0.02991
“Exact” Solution 0.11753 0.03863 0.07525 [ 0.02986
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in the case of 15 X 15 spatial nodes. This finding may not be
intuitive and needs further explanation. By increasing the num-
ber of grid points, the distance between the emitting surface
and the first node within the medium decreases. Because of this
decreased distance, the interpolation of intensities over the polar
angle at this first node spans polar angles over the range 0 <
6 < 7/2. Over such a large angular variation, the intensity
also varies considerably. In particular, as ¢ — 7/2, the optical
distances become very large and the intensity is considerably
attenuated, whereas for ¢ — 0, the extent of attenuation is quite
limited. The accuracy of the linear interpolation involving the
bounding and normal intensities /p; and Iy; over the polar angle
then decreases; hence, the results for the 5 X 5 spatial discretiza-
tion are slightly more accurate than the case involving 15 X 15
spatial discretization. Increased accuracy in the results can only
be achieved if this part of the overall interpolation process is
improved. In addition, the approach outlined in this work does
not utilize rebalance factors (Kim and Lee, 1988) to assure a
correct energy balance at each control volume.

Table 2 shows the convergence of the incident radiation in the
case of a purely isotropically scattering medium. The physical
situation under consideration is identical to the one described
previously, except that the medium contains purely scattering
particles rather than purely absorbing particles. In this case, the
calculation of highly accurate results is much less difficult since
scattering produces a much more smoothly varying intensity;
that is, scattering tends to reduce the magnitude of discontinu-
ities in the radiation intensity. Results from Crosbie and
Schrenker (1984), Kim and Lee (1988), and Thynell and
Ozisik (1987) are included for comparison purposes. Crosbie
and Schrenker (1984) solved the integral form of the equation
of transfer using a numerical integration technique; their results
are accurate to at least three significant digits. Kim and Lee
(1988) used the S-14 method but did not show the convergence
of their results. Thynell and Ozisik (1987) also solved the inte-
gral form of the equation of radiative transfer by employing the
Galerkin method, and the results are believed to be accurate to
within the number of digits shown. Inspection of the results
reveals that the method described in this work produces results
which are in close agreement with those obtained by either
Crosbie and Schrenker (1984) or Thynell and Ozisik (1987).
It should be noted that Kim and Lee (1988) only presented S-
14 results of the incident radiation along the vertical line at y

Table 2 Convergence of incident radiation at selected points for a
purely isotropically scattering medium with gL, = BL, = 1 and bounded
by black boundaries. Emission occurs along the bottom wall, /,; = 1, and
all other walls are at zero emissive power.

Gl4n

Ny=N, |No=N; (05L, ,05L,)|(05Ly,L;)| (O,L; /2) | (G, L)
2 0.24457 0.08453 0.13943 | 0.05727

3 0.24880 0.08617 0.14137 § 0.05809

5 4 0.25053 0.08638 0.14260 | 0.05910

8 0.24980 0.08619 | 0.14242 | 0.05857

12 0.24981 0.08618 0.14243 | 0.05859

2 0.24463 0.08536 0.13792 | 0.05715

3 0.24896 0.08650 | 0.14060 | 0.05832

1 4 0.25079 0.08688 | 0.14192 | 0.05909

8 0.24953 0.08692 0.14145 | 0.05832

12 0.25038 0.08701 0.14151 | 0.05873

2 0.24472 0.08573 0.13769 | 0.05729

3 0.24904 0.08673 0.14069 | 0.05842

15 4 0.25082 0.08720 | 0.14190 | 0.05922

8 0.24984 0.08740 | 0.14113 | 0.05862

12 0.25065 0.08749 | 0.14118 | 0.05895
Crosbie&Schrenker, 0.2500 0.0863 0.1422 0.0587

1984
Kim & Lee, 1988 0.24999 0.08836 - -
Thynell & Ozisik, 1987 0.250 0.086 0.142 0.059
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Table 3 Convergence of net vertical heat flux, q.{y, z)/#, at bottom-
center and top-center position for a purely scattering medium with gL,
= BL, = 1 and bounded by black boundaries. Emission occurs along the
bottom wall, /,,; = 1, and all other walls are at zero emissive power.

y Ng = N¢, Isotropic Fi F2 Bl B2

2 0.76064 | 093879 | 091161 | 0.71857 | 0.67930

0 4 0.76195 | 095027 | 091438 | 0.72194 | 0.68298

8 0.76219 | 0.95090 [ 0.91457 | 0.72186 | 0.68288

12 0.76222 | 0.95091 | 0.91453 | 0.72186 | 0.6B289

Kim & Lee, 1988 0.76696 | 095681 | 092383 | 0.72657 | 0.68718
Crosbie&Schrenker, 1984 0.7636 - - - -

2 0.24480 | 0.40775 | 036826 | 0.23340 | 0.21435

L, 4 0.24391 | 0.39770 | 0.35387 | 0.22386 | 0.20546

8 0.24375 | 040149 | 0.35644 | 0.22486 | 0.20631

12 0.24378 | 040184 | 035668 | 0.22490 | 0.20633

Kim & Lee, 1988 0.24712 | 040798 | 035732 (| 0.22862 | 0.21069
Crosbie&Schrenker, 1984 0.2439 - - - ~

= L,/2 using a spatial discretization of N, X N, = 26 X 26;
their results of the incident radiation at the boundary differ by
more than 2 percent compared to those obtained by either Cros-
bie and Schrenker (1984 ) or Thynell and Ozisik (1987). Using
the approach described in this work, results of similar accuracy
to that obtained by the S-14 method involving 112 directions
are achieved here by using 8 X 2 X 2 = 32 directions. However,
results from lower-order S-N solutions are not shown by Kim
and Lee (1988).

Table 3 illustrates the convergence of the net vertical heat
flux, g,(y, z)/m, at (y = L,/2, z = 0y and at (y = L,/2, z =
L. ) in the case of a square, purely scattering medium with 8L, =
BL, = 1. The physical situation is identical to the one described
previously, except that the medium also may scatter the radia-
tion anisotropically. The results were computed by using a spa-
tially uniform 5 X 5 discretization and increasing orders of the
angular discretization, whereas the $-14 method used a 26 X
26 spatial discretization. Examination of the results shown in
Table 3 reveals that the net vertical heat flux indeed is in very
good agreement with results available in the literature. In the
case of isotropic scattering, the results from Crosbie and
Schrenker (1984) are in excellent agreement with those ob-
tained by the method outlined in this work. However, results
obtained by the S-14 method in the case of isotropic scattering
appear to deviate slightly more from the exact results compared
to the results obtained by the method described in this work.
In the case of anisotropic scattering, the differences in the results
between the S-14 method and our approach are similar in magni-
tude to those shown for isotropic scattering.

Figure 7 shows the net radiant heat flux in the z-direction
along the centerline for a square enclosure with several different
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Fig.7 Comparison of results of net radiant heat flux along the centerline
between the discrete-ordinates method and the method outlined in this
work using scattering phase F2 with different optical dimensions of the
square enclosure (e = 1, w = 1).
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optical dimensions and scattering phase function F2. The physi-
cal situation considers a medium bounded by black walls and
a bottom surface with unit emissive power (I,; = 1), whereas
the other three surfaces are cold. Our calculations utilized a
uniform grid with N, X N, = 11 X 11 and N; X Ny = 4 X 4,
except in the case with L, = SL, = 10 in which we utilized
Ny X N, =21 X 21 and Ny X Ny = 3 X 3. Our results were curve-
fitted in order to more easily compare with the S-14 method. The
inclusion of results from Kim and Lee (1988) involves some
uncertainty since the reading from their Fig. 8 was difficult.
The S-14 method of Kim and Lee (1988) utilized N, X N, =
26 X 26 for BL, = BL, = 1, and N, X N, = 52 X 52 for L,
= AL, > 1; it appears, however that one additional node was
inserted near the bounding surfaces. Inspection of the results
reveals that our method is capable of handling both optically
thin and thick cases, since the results are in very good agreement
with those of Kim and Lee (1988). It is also noted that the S-14
method predicts a spurious rapid decrease and a rapid increase in
the flux near the bottom and top walls, respectively. Such rapid
changes appear to be nonphysical in nature and are not predicted
by the method outlined in this work.

Figure 8 illustrates a comparison of the results of the normal-
ized net heat flux along the centerline for scattering phase func-
tion F2. The S§-14 results of Kim and Lee (1988) were taken
from their Fig. 7 (the reading of which involved some uncer-
tainty ) and utilized N, X N, = 26 X 26. The considered physical
situation is identical to the one described previously, except
that the four bounding walls are nonblack with identical emis-
sivity of the four bounding surfaces. The numerical method
described in this work utilized a uniform 11 X 11 spatial discret-
ization (N, X N,), and a 4 X 4 polar-azimuth discretization (N,
X Ng). Examination of this figure reveals once again that an
excellent agreement is produced in all cases considered. As
the emissivity decreases, the intensity becomes increasingly an
angularly uniform function and the role of discontinuities dimin-
ishes. Furthermore, as the intensity becomes more angularly
uniform, the role of the scattering phase function decreases.
The intensity, however, is nonetheless discontinuous. As ex-
pected from the results shown in Table 3, the largest relative
differences between those computed by the present method and
those of discrete-ordinates method (Kim and Lee, 1988) oc-
curred in cases for which ¢ — 1.

Finally, Table 4 shows the number of iterations required for
reaching the specified convergence criterion of 107° according
to Eq. (7). These results, as well as others, were obtained on
a Pentium PS5 equipped with a 66 MHz CPU and 16MB of
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Fig.8 Comparison of results of net radiant heat flux along the centerline
between the discrete-ordinates method and the method outlined in this
work using scattering phase F2 and different surface emissivities of the
four bounding walls (w =1, 8L, = gL, = 1)
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Table 4 The required number of iterations and corresponding CPU time
(s) to reach convergence of the solution. The situation considered in-
volves a purely scattering medium bounded by black boundaries. Emis-
sion occurs along the bottom wall, /,; = 1, and all other walls are at zero
emissive power.

_ _ NoxN, = 2x2 NogxN, = 4xd NexN, = 8x8
BLy=BL| Ny=N: | yor * CPU | ter. ' cPU | Wer.  cPU
3 L3 | 13 45 | 6561

0.1 0 |20 7|2 18w 0
15 | 30 24 | 3 6 | 31 223

5 8 25 | 7 5 | 17 13

1 0 | 27 9 | m 25| 35 &7
15 | 36 28 | 45 80 | 47 288

5 5T 45 | 519 | 51 34

5 10 | 84 2| 8 57| 8 196
15 | 92 68 | 8o 171 | 88 s8

RAM using Lahey FORTRAN and single precision. The CPU
time does not include compiling, which required about 20 s. The
situation considered involves a purely isotropically scattering
medium bounded by black boundaries. Emission occurs along
the bottom wall, I, = 1, and all other walls are at zero emissive
power. These results show that the number of iterations is quite
insensitive to the order of the angular quadrature, whereas they
are much more sensitive to the optical dimensions. An increased
number of iterations is required as the optical dimensions in-
crease because radiation transfer takes on a diffusion-like char-
acter. In other words, the radiant intensity at a point within the
medium is controlled by multiple scattering rather than the di-
rect contribution from wall emission. The case with N, = N, =
15, and N, X Ny = 8 X 8 involves approximately 115,000
unknowns; in the optically thick case it requires about 5 s per
iteration and a total of 528 s to reach the specified convergence
criterion of 107°. In the optically intermediate case L, = L, =
1, the number of iterations ranged from 17 to 47, which, on the
average, is quite similar to that required for a three-dimensional
case considered by Chai et al. (1994) (who also used a conver-
gence criterion of 107°),

Conclusions

An approximate method of analysis for treating radiative heat
transfer in a two-dimensional rectangular medium containing
absorbing, emitting, and anisotropically scattering particles
bounded by emitting and diffusely reflecting surfaces is de-
scribed. The method utilizes interpolated intensities at each grid
point to obtain the indicated accuracy of the results. It is shown
that results obtained for the case of an absorbing and isotropic
scattering medium are in excellent agreement with those ob-
tained by a direct numerical integration technique of the integral
form of the equation of transfer. In the case of an absorbing
and anisotropic scattering medium, the produced results are in
very good agreement with those obtained by the discrete-ordi-
nates method. To further improve the accuracy of the method,
linear interpolation involving the bounding and normal intensi-
ties Jp; and Iy; needs to be replaced by higher-order approaches.
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Mitigation of Hazardous Fire
Thermal Radiation by Water
Spray Curtains

A radiative transfer model describing the interactions between hazardous fire thermal
radiation and water sprays is presented. Both the liquid (water droplets ) and gaseous
(mainly water vapor and carbon dioxide ) phases of the spray are considered in the
present work. Radiative properties of the polydisperse water droplets are derived
[from Mie theory. The gaseous phase behavior is handled by the correlated-k distribu-
tion method, where the k-distribution function is evaluated for Malkmus narrow-band
statistical model. The radiative transfer equation, in its integral form, is solved by a

discrete ordinates method. After a general description of the radiative model devel-
oped and the experimental task to validate it, some results are discussed on its
accuracy and CPU time. A deeper analysis is also carried out to point out the
influence of the main parameters involved in the problem.

1 Introduction

Recently, water sprays have been widely used for the mitiga-
tion of industrial hazards. The reasons for such an interest are
twofold: on one hand, these sprays offer high ability of mechani-
cal dispersion of accidental toxic releases; on the other hand,
they are an efficient means of shielding the thermal radiation
of fires. In fire mitigation applications, the spray barriers are
interposed between the source of radiation (fire) and the target
to be protected (petrochemical storage tanks, buildings, fire
brigade, etc.). In order to know with confidence the behavior
of this technique of attenuation, a common European research
project ASTRRE has been initiated by the Centre de Thermique
de Lyon (CETHIL), the Institut des Technologies Chimiques de
Lyon (ITC), and the Von Karman Institute for Fluid Dynamics
(VKI-Belgium).

Water spray is a two-phase semitransparent medium consti-
tuted by polydisperse liquid drops and participating gases (wa-
ter vapor and possibly carbon dioxide emanating from the fire).
Extensive works have been performed in the past on the analysis
of using such media for fire radiation attenuation; Ravigururajan
and Beltran (1989) and Stephenson and Coward (1986) among
others. The common features between most of these approaches,
with regard to radiative transfer modeling, are of the following
two orders:

(1) They do not take into account the gaseous phase contri-
bution in the total attenuation of the spray, and only
water droplets are considered. Then, the attenuation
ability of the spray is underestimated (Section 4.5)
by a factor depending on the temperature, molar
fractions of participating gases, and also on the na-
ture of the fire emission spectrum (function of the
type of fuel and its ratio to the air).

(2) These works are mostly based on Beer-Lambert law
or Schuster-Schwarzchild approximation (two-flux
model), which may lead to inaccurate results de-
pending on the optical thickness and the scattering
pattern of the investigated spray.
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Approaches including the two phases have been developed in
studying radiative transfer through plane parallel atmospheres
(water clouds and water vapor). Hunt and Grant (1969) used
the exponential-sum-fitting of transmissions (ESFT) method
with the discrete space technique, while the same method
(ESFT) was associated to Chandrasekhar’s principle of invari-
ance by Yamamoto et al. (1970) to describe radiative transfer
through water clouds in the infrared region. Recently, Lacis and
Oinas (1991) reported a detailed testing of the correlated-k
(CK) method, associated with the doubling and adding tech-
nique, for modeling nongray gaseous absorption in multiple
scattering inhomogeneous atmospheres.

El Wakil and Sacadura (1992) improved a technique for
solving the radiative transfer equation (RTE) in its integral
form by using a discrete ordinates method, thereby avoiding
some numerical abberations of the classical differential form.
This was achieved for gray participating media.

The same approach was then extended to nongray gaseous
but nonscattering media by Borges De Miranda and Sacadura
(1996). In the present study, the effect of scattering is included
in the analysis with a CK procedure to describe fire radiation
transfer through the two phases of water sprays.

Thus, the main objective of the work presented in this paper
is to develop a numerical tool based on the best submodels from
the literature that is more rigorous and accurate and offering a
good computational efficiency for fire engineering applications.

2 Statement of the Problem
2.1 Radiative Properties of Water Droplets.

Mie Theory. Details concerning this theory may be found
in the literature (Van De Hulst, 1957). For the sake of clarity,
some major definitions are briefly recalled here.

Mie theory describes the scattering of a plane wave by a
single homogeneous sphere. The initial step is the calculation
of coefficients a, and b,, used to represent the scattered wave
outside the spherical particle (water droplet here), and written
as follows:

g, = L2 )m & n/x] RIE(N] — Rl6n1(x)]
[Dy(y)m + nlx}&p(x) — &u-1(X)
= [mDn(y) + n/x]R[E(X)] — Re[£n-1(X)]
[mDn(y) + n/x}&u(x) = & (x)

. (1)

(2)

n
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The Riccati-Bessel function £,(x) and the logarithmic deriva-
tive D,(y) appearing in Egs. (1) and (2), are calculated by
recurrence relations given in the literature.
From a, and b, values, calculation of the efficiency factors
is then achieved with the following relations:
N

max

Qox(x, m) = e 2 (2n+ DR.(a, + by) (3

O, m) = 5 2 (20 + D)(la,)* + |67 (4)
n=|

Qﬂbs(-x, m) = Qext(x, m) - Qsca(x, m) (5)

Where |a,| represents the modulus of the complex coefficient
a,. The number of terms in the summation is given by

Nowe = x + 42" + 2. (6)

The asymmetry factor of a single water droplet is expressed as
follows:

Re(arla:xk+1 + bnb;k+l)

2(x, m) = 4 & [n(n + 2)

Qa1 n+1

-—%n—iRe(a,,bj‘)] NG
nn+1)

Using Results From Mie Calculations in the RTE. In the
RTE (Section 2.3), parameters needed for the polydisperse lig-
uid phase of the spray are the coefficients 8,,, 0, K, and
the phase function (that of Henyey-Greenstein P,y here). For
droplet polydispersion, these coefficients are given by the fol-
lowing relations;

181/[ = f TH’ZN(I")Qex[(X, m)dr (8)
[
Oy = f 7r"‘2]\',(’”)Qsca(-x7 m)dr (9)
0
and
Kl/l = ﬁl’l - Oy, (IO)

The asymmetry factor for this polydispersion is given by the
following:

fm TN(r) Quea(x, m)g(x, mydr  (11)
0

(cos B) = 1
o

vl

where g(x, m) is given by Eq. (7).

For our practical computations, the exact Mie phase function,
involving heavy calculations, is approximated by the Henyey-
Greenstein phase function. For the type of medium considered
here, it has been shown that this approximate phase function
yields results consistent with those obtained by using the exact
Mie phase function (Hansen, 1969; Goody and Yung, 1989).

The Henyey-Greenstein phase function is given by:

1 — {cos 6)*
(1 + (cos 8)% — 2{cos Oy u)*"?"

PVHG(<COS 0>’ l‘l‘) = (12)

Results from our Mie computational program (double precision
FORTRAN), have been successfully compared to those of
many works from the literature. For the purpose of model pre-
dictions comparison with the laboratory experimental data for
the sprayer TG 03 (Section 4.3 ), the droplet size and the number
density N(r) distribution have been determined experimentally

Nomenclature

a, = complex Mie coefficient
b, = complex Mie coefficient
{cos @) = asymmetry factor for droplet

my = n, — ik, droplet refraction index
m, = refraction index of the medium
surrounding the droplet

polydispersion M = number of directions in discrete
d = 2r, water droplet diameter ordinates method
Dc = 4pN(r)wr®/3, droplet con- n = series term in Mie calculations

centration (or mass loading)

Du = 2f" ¥*N(r)dr! [, r*N(r)dr,
mean Sauter diameter
f (k) = k-distribution function

ny = real part of the droplet refraction
index
N(r) = number of droplets of r radius
per unit volume (number den-

= ith e- it i sity)
&= rjrgltlf Oguadrature point in CK Pr = spray nozzle feeding relative
_ . e ) pressure

g(k) ::il:)r:ulatlve distribution func Poyso = Henyey.Greenstein phase func-

tion
x, m) = droplet asymmetry factor . . .

8 Ib) - blagkbo dyysp ectr ayl intensity Q = efficiency factor in Mie calcula-

y ) tions

I, = spectral intensity
k(g) = g7 '(k), inverse of the cumu-
lative distribution function
K,, = spray droplet polydispersion
absorption coefficient
K,, = spray gaseous phase absorp-

water droplet radius

real part of a complex number
space coordinate

As = crossed path in a control volume
T, = temperature of the spray gaseous

&
oo

i

: . hase
tion coefficient _ p N
k, = imaginary part of the droplet T= ;::f:rature of the spray liquid

refraction index

L = thickness of a participating
medium

m = droplet relative index of re-
fraction (=m,/m;) or discrete
direction in Section 2.3

T, = narrow-band averaged transmis-
sion function
w,, = weight associated to a discrete
direction, m
x = 2wrmy/\, size parameter
X = space coordinate
y = mx
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Greek symbols
B = droplet polydispersion
extinction coefficient
# = angle between incident and
scattering directions
N\ = wavelength
4 =cos @
v = frequency
A, = narrow frequency band
o = wall reflectivity
pr = liquid phase density
o, = droplet polydispersion
scattering coefficient
w; = jth g-quadrature weighting
coefficients in CK method
€ = solid angle

Subscripts

abs = absorption
ext = extinction
sca = scattering

Superscripts
— = averaged over A,
* = complex conjugate
Abbreviations

CK = Correlated-K
DOM = Discrete Ordinates Method
NBS = Narrow-Band Statistical
RTE = Radiative Transfer Equation
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with a Phase Doppler Particle Analyser (PDPA) by the Von
Karman Institute.

2.2 The Correlated-k (CK) Distribution Method for the
Spray Gaseous Phase Analysis. The reader may refer to
Goody and Yung (1989) and Riviere et al. (1992) for more
informations about the K and CK distribution methods. Some
useful definitions are recalled here.

Spectral radiative properties of droplets inside water sprays,
described in Section 2.1, slightly vary over frequency, while in
the same narrow spectral interval, the gaseous phase may have
hundreds of major absorption lines (Menart et al., 1993). One
way of accurately modeling this complex phenomenon with
reasonable computational time is to use narrow-band models
that provide averaged transmissivities over specified spectral
intervals A, . However, it is difficult to apply narrow-band mod-
els to problems involving scattering since averaged transmissiv-
ity values cannot easily be used in the RTE for such media.
Therefore, treatment of the RTE through the two phases of an
absorbing, emitting, and scattering water spray is problematic
since the RTE should be integrated over A, . In fact, this may
be achieved through line-by-line calculations, but this method
is very time consuming. An alternative way of carrying out this
frequency integration is to use the k-distribution technique for
homogeneous gaseous media and the CK distribution method
for inhomogeneous ones.

The k-Distribution Technique. The k-distribution method
consists in transforming a frequency integration into an integra-
tion over the absorption coefficient X,,, for a homogeneous non-
gray gas (Goody and Yung, 1989; Domoto, 1974). Then, in
general, for any function G[K,,(v)], its averaged value over
A, defined as

—_— 1
GIK, (V)] = EJ‘A G[K, (v)]dv (13)
is transformed into
GlK,, ()] =J-o G(k)f(k)dk (14)

where K,,(v) = kis the gas absorption coefficient, and f (k) is
the normalised k-distribution function.

In particular, the averaged transmissivity of a homogeneous
and isothermal column of length As given by

T,(As) = —1—f exp[— K, (v)Asldy (15)
AV Av
may be rewritten, using the property of Eq. (14), as
T, (As) = f exp(—kAs) f(k)dk. (16)
0

Domoto (1974) pointed out that from Eq. (16), f(k) can be
interpreted as the inverse Laplace transform of 7, (As) and that
this property allows the calculation of f(k) from narrow-band
statistical (NBS) models,

In the present work, T, (As) is calculated from the Malkmus
NBS model with exponential-tailed-inverse line strength distri-
bution (Malkmus, 1967; Young, 1977). The expression for this
averaged transmissivity for a given molar fraction of absorbing
species f,, through an isothermal and homogeneous path length
As, under a total pressure P, is

T,(As) = exp[—~<

y 1+ 27rfmf_As K.,
T

7, ”)]

(17)
where B, = 2my,/6,. Then, f(k) obtained by inversion of
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f(As) in Eq. (17) (Goody and Yung, 1989; Domoto, 1974)

18
f(k)=l ————k".%ex Z(2—k/k_—/<—/k) (18)
k 7rk5—,, p 5: v v .

k, and 6, are spectral parameters for H,O and CO, obtained by
Soufiani et al. (1985) from line-by-line calculations. The mean
half width y, for these species are obtained from the general
expression given by Zang et al. (1988):

— P Ts
YH,0 = 0.066 —I;_; {70 f[{zo 7

+ (1.2 (fuo + fy,) + 0.8 f5, + 1.6 feo,]

— P [Ts\Y
’)’I/C()z:F; "YT

X [0.07 feo, + 0.058 (fu, + fo,) + 0.15 firo].

Ts
-T—}’ (19)

(20)

Parameters f,, and P are, respectively, the molar fraction of the
absorbing species m and total pressure, Ps and Ts designate
standard pressure and temperature (1 atm, 296 K). All parame-
ters are averaged over A, = 25 cm™'.

The Correlated-k Distribution Method. The CK method
employs the cumulative distribution function given by the fol-
lowing:

k

g(k)y = fo flk")dk’ (21)

with f(k) given by Eq. (18). g(k) is a growing monotonic

function, from 0 = k < © to 0 = g < 1, with an inverse

function k(g) = g~'(k). Therefore, using the previous defini-

tion of the cumulative distribution function g, Eq. (14) is rewrit-
ten as

1

GlK,,(v)] =f0 Glk(g)]dg. (22)

One advantage of using Eq. (22) instead of Eq. (13) lies in
the fact that only a few quadrature points are needed to approxi-
mate the former since variations versus g are smooth, whereas
evaluation of Eq. (13) requires a very fine integration steps
because of strong variations of K, with respect to . The major
difficulties for CK method practical use, are the choice of the
best quadrature formula to use in Eq. (22), and the calculation
of k(g) values since no explicit analytical expression exists.
Riviere et al. (1992) in their CK procedure used a seven
Gaussian-Lobatto quadrature to approximate the integral term
in Eq. (22) according to the following expression:

! 7
GlK,(v)] = J:) Glk(g)1dg = 2, wiGlk(g)]. (23)

j=1

These authors performed k(g) calculations from a line-by-
line fitting procedure under 26 temperature and pressure condi-
tions; the quadrature points g; (j = 1 to 7) are 0.0, 0.155405848,
0.45, 0.744594152, 0.9, 0.935505103, and 0.984494897. The
weights w; associated with the points are, respectively, 0.045,
0.245, 032, 0.245, 0.0561111111, 0.051248583, and
0.037640306.

The formulation used in this work is a hybrid approach since
it is based on the seven known g-points and weights above
mentioned from Riviere et al. (1992) (these few g-points con-
siderably reduce the computational time), but k(g) calculation
is based on Malkmus NBS model technique (Lacis and QOinas,
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1991). This technique is attractive because, provided that the
band model parameters k, and 6, are known, k(g) calculation
is easily achieved with a numerical Newton-Raphson procedure
(Lacis and Oinas, 1991).

2.3 Spectrally Averaged Radiative Transfer Equation.

Averaged Intensity. The radiative transfer equation (RTE)
applied to a water spray is expressed as

dal(s, Q)

d + (K,,/ + Kug + O',,[)I,,(S, Q)
A)

= 1/111)u[T1] + Kuglbu[Tg}

Ul//(s)

I,,(S, Q ’)PI/HG(SI ' Q)dﬂ '.
4 Q'=4r

(24)

To obtain the spectrally averaged intensity 1,, the RTE is aver-
aged over a narrow spectral interval A,. Applying the operator
(1/AV) oo ... ydv to both sides of Eq. (24) and using

properties from CK procedure given by Eq. (23), we deduce
the following expression:

Mﬁ-ﬁ,];(s,ﬂ):&(s,ﬁ) (25)
ds
with
6i = Ku[ + k(g:) + Tty (26)
and the index i varying from 1 to 7.
The source term is given by the following:
Si(s, Q) = Kl [ Ti] + k(g:) 10l T, ] (27)

2uls) L(s, Q) Puc(R' = Q)dQ .

4’/T O =dr
Integral formulation of a discrete ordinates method is used to
solve Eq. (25) and the averaged intensity is then deduced from
I; values by:

7
Tu = —1——f Ldv =Y wl.
Av

~ (28)

i=|

Integral Formulation of the Discrete Ordinates Method.
Equation (25) is solved by the integral approach of a DOM (El
Wakil and Sacadura, 1992), using the control volume tech-
nique. Integration of this equation along the physical path from

= ( to s gives the following:

(s, §0) = L(0, ) exp(~fis)
+ f Si(s', Q) exp[—Bi(s — s"))ds" (29)
0

where I, (0, £2) is the intensity at s = 0 for a direction Q.
Using a discrete ordinates method, Eq. (29) is expressed for
a discrete direction m as follows:

m

chtion
/ 'Ll(e,m)
As

Fig. 1 Arbitrary control-volume

Li(w,m)
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Fig. 2 Simplified view of the laboratory water spray facility

Ii(s, m) = [;(0, m) exp(— Bis)
S
+ f Si(s’, myexp[—6;(s — s")]ds' (30)
0

with
Si(s',m) = Kl IT/] + k()10 [T,]

’ M
+5‘—"jr(f—) S wali(s', m' )P (m' = m). (31)
T

m'=1
Index m varies from | to M.

The integrated Eq. (30) is applied to a control volume (Fig.
1) with the assumptions that the source term S; (s’, m) is con-
stant in the control volume and intensities are uniform on both
of its sides. Then, the resulting intensity is expressed as follows:

Li(e, m) = Ly(w, m) exp(—5;A,)
+ S,'(P, m)
Bi

S; (P, m) represents the source term evaluated at the center of
the control volume, and As represents the path crossed between
the in and out sides.

[l —exp(=B;As)]. (32)

3 Experimental Set Up

Instrumentation. The experimental arrangement used in the
CETHIL laboratory to investigate water sprays attenuation abil-
ity is schematically shown in Fig. 2. The objective is to deter-
mine the fraction of the infrared incident collimated beam trans-
mitted through the spray (the range 1.5-12 um of wavelength
region is considered). The spectrometer is a FTS 60 A (Bio-
Rad, Inc.)-type, based on Fourier transform spectroscopy. The
source of radiation, characterised by a blackbody emission spec-
trum at 1300°C, is a tungsten filament inside a silica tube. An
entrance slit with four movable holes (1.2, 2.7, 4, and 7 mm
diameter) determines the solid angle of the infrared collimated
beam. [ The Michelson interferometer principle is used, so that
the exit infrared beam can be measured by a detector, as a
function of path difference between the fixed and movable mir-
rors (Fig. 2).] The detection system, composed of a spherical
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mirror collecting the beams and concentrating them on a quantic
detector HgCdTe (1.5-12 um), is mounted on a goniometer
arm to allow bidirectional transmission measurements and de-
tection of scattered radiation. Both the spectrometer and the
detection system are purged with dry air and connected to a
data acquisition system. The incident collimated beam and the
beam transmitted through the spray, cross-purged tubes T1 and
T2, to prevent any absorption from the surrounding atmosphere
so that the measured attenuation is only due to the spray. Water
sprays that we investigated are generated by different type of
industrial sprayers from Spraying Systems Co. The sprayer is
movable in vertical direction, and the measurements are parame-
terized in function of the vertical distance from the spray nozzle
exit and the feeding pressure.

Measurement Procedure. The experimental arrangement
presented above allows measurement of spectral transmittances.
For a given sprayer and feeding pressure, two measurements
are carried out: one without the spray (to know the incident
energy ), and the other with the spray (transmitted energy ). The
ratio between the transmitted and incident energies provides the
transmittance of the water spray.

4 Results and Discussion

4.1 Comparisons Between Model Predictions and Previ-
ous Works for a Water Vapor Slab Bounded by Diffusely
Reflecting Walls. The aim of this part is to check the accuracy
and computational time of the model presented in Section 2
through a comparison with published work (Menart et al., 1993)
for a one-dimensional transfer. The studied configuration is that
presented by Menart et al. (1993) and consists of pure water
vapor at | atm in a plane parallel slab bounded by gray, diffusely
reflecting walls. The slab temperature profile is either uniform
(1000 K), with both walls at 0 K, or a parabolic type, with a
temperature range lying from 400 K (at X = O and X = L) to
1100 K (at X = L/2) (Zhang et al., 1988). The slab thickness
is divided into 20 uniform sublayers, and results are presented
in terms of total volumetric radiative source distribution (—dg/
dx). Calculations are carried out for our model with a 520
Gaussian quadrature scheme in DOM, and the following spec-
tral absorption bands of water vapor are considered: 150—2325
cm™!, 2900-4725 cm™', and 49005675 cm™!. Figure 3 pres-
ents the radiative source distribution for the uniform tempera-

0.00 —
-100.00 —
g |
8
k=4
-l
' { ]
220000 ¢~ - - Model i
~———— Menart et al. (first degree closure) }
— 2
B
|
i
j X1
-300.00 . ; ; .
: 1 } } T
0.00 0.20 0.40 0.60 0.80 1.00

Fig. 3 Radiative source distribution for the uniform temperature profile
L =05m, p(X =0) = 0.9, p(X =L) = 0.0]
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Fig.4 Radiative source distribution for the parabolic temperature profile
[L =01m, p(X =0) =09, p(X =L) = 0.9]

ture profile with L = 0.5 m, p(X = 0) = 0.9, and p(X = L) =
0.0. Results of our model are compared to those of Menart et
al. (1993) using what these authors call ‘‘first-degree closure”’
formulation, in which spectral correlations are accounted for
and wall reflections explicitly treated. A maximum relative devi-
ation of about 20 percent at X/L = 0.825 is observed, where
our approach underestimates the radiative source. For the major
part of the spatial domain, our predictions are neatly close to
their solution. The CPU time required in our work for this case
is 9.21 s on a IBM RISC System/6000 3 AT computer. Figure
4 shows the comparison for the parabolic temperature profile
with both reflecting walls for L = 0.1 m, p(X = 0) = 0.9 and
p(X = L) = 0.9; small discrepancies are observed between the
two curves. It is worth noting that the CPU time required in
our approach for this last case is 40.59 s on a IBM RISC
computer, whereas the solution by Menart et al. (1993), for
such highly reflecting walls, requires 10,000 s on a CRAY-2
super computer.

4.2 Experimental Spectral Transmittances of a Water
Spray: Influence of Droplet Size and Concentration. The
objective of this section is to show, experimentally, the influ-
ence of the two main parameters controlling the spray liquid
phase attenuation: the droplet size and concentration. Results
are presented for the sprayer TG 03 at 250 mm vertically from
the nozzle in the incident direction. The spectrometer spectral
resolution is 8 cm™', and the transmittance curves are presented
in Fig. 5, for three pressures: Pr = 1, 3, and 5 bars, correspond-
ing to a spray thickness of about 0.24 m and mean Sauter
diameters of 105, 100, and 90 um, respectively. An integration
of measured spectral transmittances from 1.5 to 12 um leads to
the following values: 0.90, 0.80, and 0.68, respectively, for the
three previous pressures. Figure 5 clearly shows that an increase
in pressure (and flow rate) improves the spray attenuation abil-
ity. This behavior arises from the fact that increasing the nozzle
pressure involves two main effects: first a larger break-up of
the liquid drops, inducing production of much smaller droplets,
and second an increase in the droplets density (and concentra-
tion). Thus, the concentration varies from 0,009 kg/m? at 1 bar
to 0.05 kg/m? at 5 bars. Moreover, an analysis of the scattering
diagrams given by Mie theory shows that small droplets scatter
more radiation outside the incident and forward direction, with
an important backscattering fraction in some situations (con-
trary to large drops scattering mainly in the forward direction };
this contributes to their higher attenuation power. The combined
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Fig. 5 Experimental spectral transmittances of a sprayer TG 03: influ-
ence of droplet size and concentration. Pr = 1 bar (Dc = 0.009 kg/m?),
Pr = 3 bars (Dc = 0.026 kg/m?), Pr = 5 bars (Dc = 0.05 kg/m?).

effect of small droplets and high concentration on attenuation,
observed from the experimental curves in Fig. 5, can also be
explained from the extinction coefficient expression

/Bul = 3qu‘DC/(2p,d).

From Eq. (33), increasing the droplet concentration and de-
creasing its diameter leads to higher values of the extinction
coefficient. The experimental results presented in this section
are also in good agreement with the model parametric study
carried out in Section 4.5 to investigate a large range of drop
sizes and concentrations.

4.3 Model Validation With Experimental Spectral
Transmittances of a Water Spray (With Both Phases Partic-
ipating). The experimental results presented in Section 4.2
are compared to predictions from our water spray model. Com-
parison results are presented in Figs. 6 and 7, respectively, for
1 and 5 bars pressures, with a respective mean standard devia-
tion of 1 and 2 percent on experimental transmittances. The
calculated spectral transmittance is the ratio of transmitted and

(33)

100,01

90.0

80.0

70.0

60.0

50.01

Transmittance (%)

40.0

300 SPRAYER TG 03, Pr=1 bar
200
i MODEL ( 25 cm-1 )
10.0+ !
ji Wavelength (pm)

0.0 \

!
EXPERIMENTS (8 cm-1) |
i
|
|

20 30 40 50 60 70 80 90 100 110 120
Fig. 6 Comparison between experimental and model predicted trans-

mittances for a sprayer TG 03, Pr = 1 bar (D, = 106 um, Dc = 0.009 kg/
mé, L = 0.24m)
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Fig. 7 Comparison between experimental and model predicted trans-
mittances for a sprayer TG 03, Pr = 5 bars (D3, = 90 um, Dc = 0.05 kg/
m3, L = 0.24 m)

incident intensities when considering the incident normal direc-
tion. A S20 Gaussian quadrature in DOM, with 20 uniform
sublayers, are used for a one-dimensional transfer. Temperature
and relative humidity of the spray (measured by the Institut
des Technologies Chimiques) are, respectively, 25°C and 80
percent, and these parameters are used in gas model calcula-
tions. The two phases of the spray are included in the analysis
and water vapor is the main participating specie of the gaseous
phase (H,0-N,-0,-CO, mixture) that is considered, the other
species are accounted for in broadening. The resolution for the
experimental spectrum is 8 cm™', while CK calculations are
performed with a 25 cm™' resolution that is determined by the
data k, and 6, provided by Soufiani et al. (1985) for this resolu-
tion. Although carbon dioxide has no significant molar fraction
in the considered spray (0.00029) with a negligible contribution
to the total attenuation, a 4.3 ym absorption band is observed for
the 8 cm™' experimental curve. Including CO; as a participating
species, predictions of our 25 cm™! model for this 4.3 yum region
results in no significant difference with model predictions pre-
sented in Figs. 6 and 7. Since the target to be protected receives
total or integrated fluxes, comparison between model and exper-
imental data are carried out in terms of total transmitted intensi-
ties (1.5-12 pm).

A good agreement is observed between the spectral experi-
mental and model-predicted transmittances. The gaseous phase
behavior is well suited by the model. For Pr = 1 bar (Fig. 6),
a relative error between experimental and model transmitted
intensities of 1.55 percent is observed with a CPU time (IBM
RISC) of 38.49 5. The corresponding quantities for Pr = 5 bars
(Fig. 7) are, respectively, 6.6 percent and 70 s. A similar relative
error model-experiments (2.5 percent) is observed for Pr = 3
bars. One reason of the relatively larger spectral deviation for
small wavelengths in Fig. 7 (Pr = 5 bars) is that the experimen-
tal curves show higher standard deviation for this spectral range
when the sprayer pressure increases.

According to these previous comparisons, the developed
model shows a good agreement with experimental curves and
offers an efficient computational time.

4.4 Total Transmissivities of Water Droplets: Influence
of Size and Mass Loading. In order to check the effect of
droplet size and concentration on the attenuation ability of water
sprays, a simulation has been performed with our code ( version
without gas) for a wide range of droplet sizes and concentra-
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tions. A droplet monodispersion is assumed. Figure 8 shows
the results for a water spray of length L = 30 cm. The wave-
length range for spectral integration is 0.8—20 pm, and a-S20
quadrature scheme with 20 uniform sublayers is used. It is well
shown that small droplets with high concentration are extremely
efficient in radiation attenuation (this behavior has been experi-
mentally shown in Section 4.2). In contrast, large drops are
poorly efficient even at high loadings. The reason is that for a
given concentration, decreasing the size of the droplets leads
to an increase of the total surface facing radiation. Although
performances of a water spray curtain are improved by small
droplets with high concentration, a compromise must be found
for industrial applications. Such sprays with fine drops have
shorter reach and are more susceptible to wind effect. Moreover,
nozzles producing them are easily obstructed. A compromise
solution may be a ‘‘sandwiching’’ of fine sprays between a
large droplets arrangment for wind stabilization.

4.5 Effect of the Gaseous Phase Temperature and Molar
Fraction on the Total Attenuation of a Spray. The aim of
this section is to show the effect of gaseous phase on the attenua-
tion power of a water spray. The configuration simulated here
is a spray barrier of length L = 0.2 m, constituted with monodis-
perse droplets of diameter 100 pm and concentration D¢ = 0.1
kg/m*, providing a mean total attenuation of about 50 percent
(see Fig. 8). The gaseous phase considered here is water vapor,
and the spray temperature and relative humidity are varying,
respectively, in the range 27-70°C and 60~100 percent. All
the above-mentioned simulation parameters are consistent with
realistic configurations. The incident radiation spectrum is that
of a blackbody at 1300°C and, this spectrum may be compared
to emission spectra of hydrocarbon fires. A comparison is made,
in the incident direction, between the integrated transmitted
intensity (0.8—20 um, significant wavelength range) when tak-
ing into account the two phases of the spray (so called ‘‘com-
plete’’ solution) and when neglecting the gas contribution. Fig-
ure 9 shows tendencies for the simulated configuration. Neglect-
ing the gaseous phase overestimates the total transmitted
intensity (or underestimates the attenuation ability of the
spray ). The relative error on Fig. 9 is defined as:

Error = |“‘Complete’’ solution—Integrated transmitted
intensity without gas |/‘‘Complete’” solution.

It is well shown that an increase in temperature and relative
humidity of the spray leads to a larger underestimation of its
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Fig. 8 influence of droplet diameter and concentration on total attenua-

tion of the liquid phase of a water spray (L = 0.3 m)

752 / Vol. 119, NOVEMBER 1997

SPRAY TEMPERATURE ],

— 27°C

‘COMPLETE"

- - - 40°C

g
zZ
ég — - soC
z3 [ —— 60cC
e
27 w00 T --- 700C
= [ _ - —_—
g -
E i ) .
5 | . .-
400 — e
[
0.00 RELATIVE HUMIDITY OF THE SPRAY (%)
Y ‘ . . : 1
60.00 70.00 £0.00 %0.00 100.00
Fig. 9 Influence of the gaseous phase parameters (temperature, relative

humidity) on the transmitted intensities for a given water spray [L = 0.2
m, Dc = 0.1 kg/m?, d = 100 um]

total mitigation power. An error of about 16 percent is observed
at 70°C with a relative humidity of 100 percent. Although these
conclusions are relative to the simulated configuration, they
prove the importance of taking into account the gas when mod-
eling interactions between water spray and fire radiation.

5 Conclusions

This study has presented a method for modeling fire radiation
transfer through water sprays for fire engineering applications.
Our approach, more rigorous than previous works available in
the literature, includes the two phases (liquid and gaseous) of
the spray in the analysis by combining the best submodels from
the literature: the Mie theory for droplet properties, the corre-
lated-k method to handle the gaseous phase contribution, and
the integral formulation of the discrete ordinates method to
solve the radiative transfer equation. The good accuracy and
computational efficiency of this model have been shown with
comparison to some results from Menart et al. (1993) for a
one-dimensional transfer. A comparison with the laboratory ex-
perimental data for a sprayer TG 03 also shows a good agree-
ment, with computational times consistent with an industrial
use. This work has also provided new and useful information
regarding the experimental spectral behavior of water sprays
and the influence of the main parameters controlling the spray
attenuation ability: droplet size and concentration and water
vapor molar fraction.
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Subcooled Boiling Flow

The velocity field was measured in turbulent subcooled boiling flow of Refrigerant-
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113 through a vertical annular channel whose inner wall was heated. A two-compo-
nent laser Doppler velocimeter was used. Measurements are reported in the boiling

layer adjacent to the inner wall as well as in the outer all-liquid layer for two
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fluid mass velocities and four wall heat fluxes. The turbulence was found to be
inhomogeneous and anisotropic and the turbulent kinetic energy significantly higher

than in single-phase liquid flow at the same mass velocity. A marked shift toward
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the inner wall was observed of the zero location of the axial Reynolds shear stress
in the liquid phase, and the magnitude of the shear stress increased sharply close to
the inner wall. The near-wall liguid velocity field was quite different from that in
single-phase liquid flow at a similar Reynolds number. Comparison of the measure-

ments with the predictions of a three-dimensional two-fluid model of turbulent sub-
cooled boiling flow show reasonably good agreement for some quantities and a need
Jor further development of certain aspects of the model.

Introduction

Turbulent subcooled boiling flow is found in many types of
equipment of engineering interest—for example, nuclear reac-
tors, steam generators, and refrigeration systems. In this flow,
discrete vapor bubbles flow with a liquid continuum. Among
the many aspects of turbulent subcooled boiling flow about
which little is known are: (i) the turbulence characteristics of
the liquid and vapor phases, (ii) spatial distribution of vapor-
liquid interfacial area, and (iii) interfacial transport rates of
mass, momentum, and thermal energy.

We are collaborating with Electricité de France (EDF) in a
study of the aforementioned aspects of turbulent subcooled boil-
ing flow. The study includes experiments as well as model
development. In an earlier effort we had measured velocity and
temperature fields in the all-liquid layer (region I, Fig. 1) by
three-sensor hot-film anemometry, Roy et al. (1993). Possible
discrepancies in some of these measurements will be pointed
out in the present paper. In another paper, Roy et al. (1994),
a method for obtaining the interfacial area concentration distri-
bution was described. Measurement of the temperature field in
the boiling layer was also presented. Mention should be made
here of the temperature field measurements reported by Hino
and Ueda (19853, b).

In this paper we report measurements of some of the im-
portant velocity field quantities in turbulent subcooled boiling
flow through an annular channel with heated inner wall. Mea-
surements were made in the boiling layer (region II, Fig. 1)
and in the adjacent all-liquid layer (region I) at one axial plane
of the channel. Our goals were to obtain from these measure-
ments a clear idea of the structure of turbulence and help in
model development. The liquid-phase velocity field is compared
with that of single-phase liquid flow, both heated and unheated,
in the same channel and the same Reynolds number based on
liquid properties at the channel inlet. The measurements are
also compared to the predictions of a computational code based
on three-dimensional two-fluid model of turbulent subcooled
boiling flow which is under development at EDF, Briere et al.
(1995). :

While no previous measurements could be found of the veloc-
ity field in the two-phase region of turbulent subcooled boiling

Contributed by the Heat Transfer Division for publication in the JOURNAL OF
HEAT TRANSFER. Manuscript received by the Heat Transfer Division May 6,
1996; revision received May 30, 1997; Keywords: Boiling; Multiphase Flows;
Turbulence. Associate Technical Editor: R. D. Boyd.

754 / Vol. 119, NOVEMBER 1997

flow, the open literature contains many experimental studies of
the velocity field in isothermal bubbly gas-liquid flow. For brev-
ity, we will refer to only a few.

Serizawa et al. (1975a, b, c¢) performed experiments and
modeling in a study of turbulent bubbly air-water flow through
a vertical pipe. A two-sensor electrical resistivity probe was
used to measure the local bubble velocity, gas fraction, and
bubble passage rate. The water velocity distribution was mea-
sured by constant temperature hot-film anemometry. Radial and
axial temperature distributions due to a heated line source were
measured by thermocouples. Transport quantities such as turbu-
lent shear stress and turbulent thermal diffusivity were reported.

Theofanous and Sullivan (1982) conducted laser Doppler
velocimeter (LDV) measurements of the liquid velocity field
in turbulent bubbly nitrogen-water flow through a vertical glass
pipe. Distributions of the liquid mean axial velocity and axial
and tangential intensities were reported. A simple theory for
predicting the liquid turbulent intensity was proposed.

Marié (1982) employed LDV to measure the rising velocity
of bubbles and the normal Reynolds stresses in the liquid phase
of air-water bubbly flow through a vertical square channel. The
measurements were made in the uniform mean flow region of
the channel. The data indicated significant increases in the nor-
mal Reynolds stresses in the liquid.

Wang et al. (1987) used single and multi-sensor hot-film
anemometry to measure the gas-phase distribution and liquid-
phase turbulence in bubbly air-water up and down-flow through
a pipe. Reynolds normal and shear stresses in the liquid were
found to increase in the presence of air bubbles.

Vassallo et al. (1993) conducted LDV measurement of the
time-mean gas bubble and liquid velocities in turbulent air-
water flow through a vertical rectangular channel. A combina-
tion of back-scattered and reflected forward-scattered (retro-
reflect) light collection techniques was used. ,

Grossetéte (1995) carried out optical fiber probe measure-
ments in isothermal bubbly gas-liquid flow through a vertical
pipe. The objective was to explore issues such as interphase
momentum transfer and coalescence/fragmentation of bubbles.

Velidandla et al. (1996a) measured the velocity field in iso-
thermal, turbulent bubbly gas-liquid flow through a vertical pipe
by laser Doppler velocimetry. The gas-phase distribution was
also measured—by an optical fiber probe.

The Experimental Apparata

The Test Section. The 3.66 m long vertical concentric an-
nular test section featured a heated inner wall and an outer wall
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Fig. 1 Subcooled boailing flow in an annular channel—boiling layer and
adjacent all-liquid layer

insulated all along its length except for a 15 ¢cm portion of the
0.521 m long measurement section shown in Fig, 2. The inner
tube of the test section was of 304 stainless steel (i.d. = 14.6
mm, o.d. = 15.8 mm). The outer tube was of transparent pyrex
glass (i.d. = 38.1 mm, o.d. = 47.0 mm) except for the measure-
ment section which was of optical quality quartz (i.d. = 37.9
mm or 38.0 mm', o.d. = 41.8 mm). Refrigerant-113 (R-113)
was the working fluid. An anodized aluminum box with quartz
front, side, and back windows served as a jacket around the
aforementioned 15 cm length of the quartz tube. This box was
filled with liquid R-113 to alleviate laser beam refraction at the
outer wall of the quartz tube.

The upper 2.75 m length of the stainless steel tube could be
resistively heated by direct current. The lower 0.91 m length
of the test section served as the hydrodynamic entrance length.
The stainless steel tube was equipped with four surface thermo-
couples on its inner wall (all located in the measurement sec-
tion) and filled with aluminum oxide powder insulation. The
temperature of the tube outer wall (this being the annulus inner
wall) could be calculated from the measured tube inner wall
temperature and the known wall heat generation rate by a
steady-state heat conduction analysis. The heating power to the
test section was calculated as the product of the magnitude of
direct current from a D.C. power supply (Rapid Technologies;
40 volts, 1500 amperes maximum) and the voltage differential
across the heater tube.

' Two quartz sections were used in the course of these experiments, Although
they were prescribed to be of the same i.d., measurement revealed a difference
of about 0.1 mm.
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Fig. 2 The measurement section

The measurement plane (m.p.) was 0.424 m (=19 hydraulic
diameters) downstream of the measurement section entrance,
this entrance being, in turn, 1.562 m downstream of the begin-
ning of the channel heated length. Effect of the slight mismatch
(=0.2 mm) between the inner diameters of the quartz tube and
the upstream pyrex tube on the fluid velocity field at the m.p.
was assumed to be negligible.

The measurement section shown schematically in Fig. 2 was
not equipped with a mounting block for the microthermocouple.

Nomenclature

a; = local, time-averaged interfacial
area concentration
D, = mean vapor bubble diameter

k; = liquid phase turbulent kinetic en-
ergy per unit liquid mass
g = inner wall heat flux ation intensity

r = radial coordinate
radius of boiling layer outer edge
r; = annulus inner wall radius
r, = annulus outer wall radius
R* =nondimensional radial coordinate
==, — )
T = time-mean temperature v,
t" = temperature fluctuation intensity yt
U. = friction velocity = Vol oL
U; = time-mean vapor bubble axial ve-
locity

<
I

Il

&~
Il
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U, = time-mean liquid axial velocity
ug = vapor bubble axial velocity
fluctuation intensity
ur, vy = liquid axial velocity fluctuation
intensity, radial velocity fluctu-

u* = nondimensional mean axial ve-
locity = U/ U,

u, = interfacial energy per unit area
(uv), = single-point cross-correlation
between liquid axial and radial
velocity fluctuations
time-mean liquid radial velocity
nondimensional coordinate nor-
mal to wall = yU,/v,
axial coordinate

Greek symbols

ag, oy = vapor residence time fraction,
liquid residence time fraction
v, = liquid kinematic viscosity
p1, = liquid density
pu = density of vapor-liquid mixture
o = surface tension
7 = Reynolds stress tensor
7. = wall shear stress
€, = turbulent energy dissipation
rate in liquid per unit liquid
mass
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A second section (quartz tube i.d. = 38.0 mm) was provided
with a mounting block a few mm downstream of the LDV
m.p. where a microthermocouple was installed to measure fluid
temperature distribution at the LDV m.p..

Measurement Instrumentation. A two-component laser
Doppler velocimeter (LDV) system (TSI) was used to measure
the fluid velocity field in the annular measurement section. The
system featured a 100 mW argon-ion laser and an 83 mm diame-
ter 250 mm focal length fiber-optic probe with a back-scatter
light detector. The LDV system included a fiber detector that
could be placed in any light scattering direction (for example,
at 90 degrees to the direction of laser beam incidence) as well
as a retro-reflector. The retro-reflector consisted of a reflecting
prism and a focusing lens and directed the forward-scattered
light back to the backscatter detector.” The probe, the fiber
detector, and the retro-reflector were mounted on independent
three-dimensional traverse mechanisms, each mechanism also
containing a rotational stage. All velocity data reported in this
paper were obtained in the backscatter mode. White nylon parti-
cles of 3—7 um size were used to seed the flow.

There is a significant difference between the refractive indices
of liquid R-113 and quartz; for example at 31.2°C, the refractive
index of liquid R-113 is 1.351 and that of quartz 1.458. So,
refractive index mismatch existed at the inner and outer walls
of the quartz tube. Furthermore, in the heated flow experiments,
the time-mean liquid refractive index varied spatially in the
annulus due to variation of the mean liquid temperature. There
was also some (albeit much less) spatial variation of the time-
mean refractive index in the aluminum box liquid. To compen-
sate for these and locate the LDV measuring volume (m.v.) at
desired positions in the annulus, a beam tracing algorithm and
a beam steering module were used, Velidandla et al. (1994).

One other refractive index-related issue required attention. It
involved the cumulative (along the laser beam path) effect of
the random fluctuations in the liquid refractive index, due to
turbulent temperature fluctuations, on the crossing of the beams
and the movement of fringes in the m.v. (Buchhave et al.,
1979). Further comments are made on this issue in the section
on LDV calibration.

In isothermal flow of liquid R-113, the LDV probe volume
was calculated to be an ellipsoid with minor axes (in the r-z
plane) about 0.1 mm long and major axis (perpendicular to the
r-z plane) about 1.0 mm long. The actual measuring volume is
more difficult to determine and was assumed to coincide with
the probe volume. In the arrangement shown in Fig. 2, the minor
axes defined the radial and axial positions of measurement in
the test section.

Measurement of liquid velocity in bubbly boiling flow is
further complicated by refraction and reflection of the laser
beams by the bubbles. On the other hand, light reflected by
the bubbles, under proper conditions, enables measurement of
bubble velocity. A bubble could only be ‘‘seen’’ by the back-
scatter detector (=250 mm away) when the reflected light was
within the 11 degree cone angle subtended at the location of
reflection by the detector lens. Furthermore, a burst signal was
generated only when reflected light due to both laser beams of
a particular color interfered at the detector. Such interference
will typically occur for a duration significantly shorter than that
due to a seed particle in the liquid.

To measure liquid velocity, the LDV signal must be pro-
cessed so as to discriminate between the Doppler bursts due to
the seed particles in the liquid and those due to bubbles. Now,
as the bubbles are much larger in size than the seed particles,
the amplitude of the Doppler signal pedestals, due to bubbles
passing through the central region of the m.v., would usually

*The data rate in this mode was usually much higher than in the backscatter
light collection mode. However, the retro-reflect mode was an option in single-
phase flow measurement only.
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be considerably higher than the pedestal amplitude due to seed
particles passing through the same region. Bubbles travelling
through the edges of the m.v. may, however, give rise to pedes-
tal amplitudes comparable to those due to seed particles passing
through the central region of the m.v. Distorted and unsteady
shape of the larger bubbles may also reduce the pedestal ampli-
tude, as noted by Sheng and Irons (1991). Hence, the potential
for “‘cross-talk’’ between liquid (seed particle) and bubble sig-
nals remains.

Two factors rendered this cross-talk small during our liquid
velocity measurement, First, an electronic discrimination circuit
was installed between one of the two PMTs and the LDV signal
processor. The bursts with pedestal amplitude higher than a
chosen threshold voltage were tagged by the circuit as being
due to bubbles and removed from both PMT output signals
prior to their analysis. Second, the data rate due to bubbles
(established separately) was typically two orders of magnitude
lower than that due to seed particles in the liquid.® As such,
bias imparted to the liquid velocity data by bursts due to vapor
bubbles that escaped removal by the discrimination circuit
would be very small.

The velocity of vapor bubbles was measured separately in
the backscatter mode. This measurement depends on the fringes
produced at the detector by laser beam light reflected from a
bubble surface as it moves through the measurement volume.
This reflected light reaches the detector only when it is within
the solid angle subtended by the detector at the measurement
volume. Furthermore, the number of fringe crossings must be
sufficient for signal validation.

In the bubble velocity measurement experiments, first, the
seed particles were removed from the liquid by filtration. Next,
the PMT excitation voltage was lowered below the voltage
required by the seed particles to generate Doppler burst signals,
thus ensuring that no bursts resulted from any remaining seed
particles. At the same time, a much larger frequency shift com-
pared to that used for measuring liquid velocity (500 kHz com-
pared to 100 kHz) was introduced so that sufficient number of
cycles would be contained in at least some of the bubble-gener-
ated Doppler bursts to allow validation of data. One problem
caused by this large frequency shift was that for about one-third
of the validated data, two velocity samples were gathered from
a single bubble. For the remainder, one sample was obtained
per burst. We analyzed some of these signals in two ways: (i)
the second sample was removed from the appropriate data and
the signal so conditioned was analyzed for velocity; and (ii)
the original (unconditioned) signal was analyzed for velocity.
In all cases, the difference between the mean bubble axial veloc-
ities obtained by the two procedures was within 1 percent. The
difference between the bubble axial velocity fluctuation intensi-
ties was within 5 percent. These biases have been incorporated
in the uncertainty estimates of the mean bubble axial velocity
and axial fluctuation intensity. The uncertainty estimates are
reported later in this paper.

To determine the extent of statistical bias in the liquid velocity
data, some of the isothermal and heated liquid flow experiments
were repeated in the retro-reflect light collection mode. Because
of the much higher data rate that become available in this mode,
the signal processor could be operated as a controlled processor
and bias essentially eliminated. Statistical bias in the backscatter
data was found to be insignificant (Velidandla et al., 1996b).

To determine whether the cumulative effect, along the beam
paths, of the random fluctuations in the liquid refractive index
was significant, the backscatter data for several heated single-
phase liquid flow experiments were compared with the corre-
sponding retro-reflect data.” Results indicated that the velocity

* This was the case even in regions where the bubble passage rate was large
because only a few generated validated burst signals.

* Note that the scattered light travels approximately thrice the distance in the
annulus liquid in the retro-reflect mode compared with the backscatter mode.
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Table 1 Range of parameters and their uncertainties*—
subcooled boiling flow experiments

Parameter Range Uncertainty
Inner wall heat flux 79400~126000 W/m*  +200 W/m*
Mass velocity 565-785 kg/m® s +3 kg/m® s

R-113 partial pressure at 269 kPa/80.5°C +0.7 kPa/=0.2°C
measurement plane/
sat. temp.

Mean liquid temperature

at test section inlet

42.7-50.2°C +0.1°C

* The uncertainty estimates are for 95 percent confidence.

measurements were not significantly affected by the random
fluctuations in the liquid refractive index (Velidandla et al.,
1996b).

CTA measurement comparisons encompassed measurements
in single-phase liquid flow through the measurement section,
both heated and unheated. The LDV data were compared with
data obtained in an almost identical measurement section (the
outer tube was of 304 stainless steel rather than quartz) by
constant temperature hot-film anemometry (CTA), (see Hasan
et al., 1992).° While good agreement was generally obtained
for isothermal flows, distortions became apparent in the CTA
data for heated flows (Velidandla et al., 1996b). It appears that
the CTA turbulence measurements in heated flow were affected
not only by the large dimensions of the intrusive probe (this
was a factor in isothermal flow as well) but also by inadequate
temperature compensation of the velocity signals. It is our view
that the LDV measurements are considerably more accurate
than our earlier CTA measurements.

Other System Measurements. Other measurements in-
cluded: (1) the dissolved air content, (2) pressure, (3) flow
rate, and (4) the dual-sensor optical fiber probe (FOP) and
microthermocouple (MTC). Air is highly soluble in liquid R-
113 and the influence of dissolved air can be significant in
boiling flow experiments. Careful degassing of the rig R-113
inventory was therefore performed and the residual air content
measured (by an Aire-Ometer, Seaton-Wilson) prior to each
experiment. For the experiments reported here, the residual air
partial pressure was about 8 kPa out of a total pressure of 277
kPa at the measurement plane. This corresponds to a reduction
in the R-113 saturation temperature from 81.6°C to 8§0.5°C. The
pressure at the measurement plane was monitored by a test
gauge (Omega, O-1200 kPa range, 1.4 kPa resolution). The
volumetric flow rate of liquid at the test section inlet was mea-
sured by a turbine flow meter (EG & G Flow Technology).
The FOP and MTC were used, respectively, to measure vapor
bubble-related quantitites and vapor/liquid temperatures and
have been described by Roy et al. (1994).

The Experiments and Measurement Uncertainties

Experiments. Table | contains the range of parameters,
over which the measurements were performed, and the associ-
ated uncertainties. In Table 1 and in the remainder of the paper,
the term ‘‘mean’’ of a quantity implies its ‘‘time-mean’’. Also,
““vapor residence time fraction” has often been abbreviated as
““vapor fraction’’.

Test section heat balance experiments were performed at the
outset with single-phase liquid flow. About 2 percent of the
supplied power was found to be lost to the ambient.

Subcooled boiling flow experiments were carried out at seven
different conditions as defined by the inner wall heat flux, fluid
mass velocity, measurement plane pressure, and liquid tempera-

> Measurements could be made much closer to the inner wall of the annular
channel by LDV compared to by CTA.

Journal of Heat Transfer

ture at the test section inlet (Velidandla, 1997). Each experi-
ment was repeated at least once. The results of experiments at
four conditions, Table 2, will be given in this paper.

To be able to quantitatively examine the changes that oc-
curred in the velocity field upon transition from single-phase
liquid flow to subcooled boiling flow, two single-phase liquid
flow experiments were performed at each ‘‘mass velocity-inlet
liquid temperature’” combination (565 kg/m?s-42.7°C; 785 kg/
m?s-50.2°C). One of the two was an isothermal experiment and
the other heated (inner wall heat flux = 16000 W/m?).

Table 3 contains the quantitites for which radial distributions
were measured at the measurement plane (m.p., see Fig, 2).
Appropriate single-phase liquid flow data have been included
for comparison in the figures which follow.

Measurement Uncertainties. A discussion of the statisti-
cal bias in our velocity data (mean Reynolds stresses) for un-
heated and heated single-phase liquid flows was presented by
Velidandla et al. (1996b). Statistical bias was judged not to be
of significance in these flows. The uncertainty in the location
of the LDV measurement volume due to uncertainty in the mean
liquid temperature (and hence, the refractive index ) distribution
was also estimated to be insignificant.

In the case of boiling flow, the issue of measurement uncer-
tainty assumes greater importance. In the following paragraphs
we present our estimates of uncertainty for the various measured
quantities.

The uncertainty in the vapor local residence time fraction is
*+1 percent for g < 0.1 and =2 percent for 0.1 < a; < 0.5.
The uncertainty in the location of the boiling fluid layer outer
edge (Roy et al., 1994) is shown in Figs. 3(a) and 6(a).

The uncertainty in the mean liquid temperature at the m.p.
is #0.3°C and that in the heated wall temperature, +0.4°C.

The uncertainty in the liquid mean axial velocity due to the
radial gradient of the velocity across the LDV m.v. is +3 percent
for R* < 0.3 and =1 percent for R* > 0.3. When combined
with the estimated statistical bias for the relatively high turbu-
lence intensity flow (3 percent for R* < 0.2, 1 percent for R*
> 0.2), the overall uncertainty becomes *4 percent near the
wall (R* < 0.2) and =2 percent away from the wall (R* >
0.3).

The uncertainties in the Reynolds stresses in the liquid phase
were estimated solely from the variance about the sample mean
as calculated from multiple measurements at each location. The
uncertainty in the axial velocity intensity is =3 percent and that
in the radial velocity intensity *4 percent. The uncertainty in
the axial Reynolds shear stress is +10 percent.

For the vapor bubble mean axial velocity measured by LDV,
the following three contributions to the uncertainty were consid-
ered: the random error found from the variance about the sample
mean (+3 percent), bias due to multiple bursts from some of
the bubbles (*1 percent), and m.v. location uncertainty (+3
percent near the inner wall, =1 percent away from the wall).
These combine to give uncertainty estimates of approximately
+5 percent near the inner wall and =4 percent away from the
wall.

For the vapor bubble interface mean axial velocity as mea-
sured by FOP, the uncertainty due to the limited resolution of
the cross-correlation peak (Roy et al., 1994) was estimated to
be *10 percent. Possible bias due to some of the small bubbles
flowing around the sensors was not considered.

The uncertainty in the vapor bubble axial velocity intensity
was estimated by combining the random error found from the
variance about the sample mean (=7 percent) and the multiple
burst bias (=5 percent). This yields an overall uncertainty of
about *£9 percent.

Experimental Results

Figures 3(a)— (i) contain the measurements of experiment
1. In Fig. 3(a), the radial distribution of vapor fraction at the
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Table 2 Conditions for four experiments

Experiment 2 Experiment 3 Experiment 4

Parameter Experiment 1
Inner wall heat flux (W/m?) 79380
Fluid mass velocity (kg/m? s)/Re;, 565/22580
R-113 pressure at m.p. (kPa) 269
Mean liquid temperature at test
section inlet (°C) 42,7

94960 115680 125920
785/34300 785/34300 785/34300

269 269 269
50.2 50.2 50.2

m.p. is shown. The radial location of the boiling layer outer
edge is also shown along with its uncertainty. The criterion for
determining the boiling layer outer edge was described by Roy
et al. (1994).

Figures 3(b) and (¢) show, respectively, the radial profiles
of mean fluid and liquid temperatures and the corresponding
temperature fluctuation intensities. The method of obtaining va-
por and liquid temperatures from the measured fluid temperature
has been described by Roy et al. (1994). The mean vapor phase
temperature was very close to the local saturation temperature
(80.5°C) across the boiling layer. The liquid remained signifi-
cantly subcooled (in the mean sense) to at least R* ~ 0.04
(our closest approach to the inner wall ). The liquid temperature
fluctuation intensity was substantial in the boiling layer. The
mean liquid temperature distribution, in addition to being an
important state property, is vital to the tracing of the beam
paths in LDV measurement. The liquid temperature fluctuation
intensity is not only an important turbulence parameter but also
an indicator of the liquid refractive index fluctuation intensity.

Figure 3 (d) shows the radial distribution of liquid mean axial
velocity for experiment 1. Also shown are the corresponding
distributions for isothermal and heated single-phase liquid
flows.® The effect of buoyancy on the latter profile has been
discussed by Velidandla et al. (1996b). Boiling brought about
significant changes in the distribution. First, the mean liquid
axial velocity inside the boiling layer increased with a concomi-
tant decrease in the velocity outside the boiling layer.” Second,
there was a marked shift of the maximum liquid axial velocity
location toward the heated wall. It is useful to view these trends
in conjunction with the vapor bubble mean axial velocity profile,
Fig. 3(e). Both FOP and LDV measurements are shown in
this figure. The FOP measurements used the cross-correlation
technique (Roy et al.,, 1994) and the differences observable
between these and the LDV measurement will be discussed
shortly. It is evident that the vapor bubbles as well as the liquid
inside the boiling layer flowed downstream with higher axial
velocity than the liquid in nonboiling condition. The liguid mean
axial velocity in the boiling flow case did not remain higher

than the liquid velocity in nonboiling condition much beyond

the boiling layer edge (this finding does not agree with our
earlier CTA measurement (Roy et al., 1993)) and eventually
became lower. One would expect the three profiles to merge as
the annulus outer wall is approached. It is also worth noting
that for both the LDV and the FOP measurements, the mean
axial velocity peak was farther away from the wall than the
highest vapor fraction location. Also, the FOP measurements
were typically higher than the LDV measurements in the outer
two-thirds of the boiling layer. Possible explanations for this
difference in measured velocity are the following: (1) some of
the smaller bubbles can be expected to flow around the FOP

¢ Measurements were not made in these flows beyond R* ~ 0.82 because of
the relatively severe laser beam refraction in the tube wall,

7 Mass balances. for the three experiments (subcooled boiling flow and the two
single-phase liquid flows) based on the liquid mean axial velocity and density
profiles (along with the vapor fraction and vapor mean axial velocity profiles in
the boiling flow case) agreed to within 1 percent. Beyond R* ~ 0.82, it was
necessary to extrapolate the axial velocity profile to the outer wall. This was done
on the basis of (1) an isothermat liquid flow experiment conducted later in which
we were able to measure, by considerable steering of the beams, the mean axial
velocity up to R* ~ 0.9 and (2) the Brighton and Jones (1964) measurements.
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sensor; and (2) the smaller bubbles move slower than the larger
ones.

The radial profile of the liquid mean radial velocity is shown
in Fig. 3(f). The profiles for the corresponding isothermal and
heated single-phase liquid flows are also shown. In all cases,
the radial velocity was only about 1 percent of the mean axial
velocity in magnitude.

Figures 3(g) and (A) contain, respectively, the radial distri-
butions of liquid axial velocity fluctuation intensity and radial
velocity fluctuation intensity for the subcooled boiling, heated
single-phase liquid, and isothermal liquid flows. Buoyancy ef-
fects which led to differences between the intensity distributions
in the latter two flows have been discussed by Velidandla et al.
(1996b). In the case of subcooled boiling flow, dramatic in-
creases in both axial and radial intensities were observed within
the boiling layer, especially as the heated wall was approached.
The radial intensity remained significantly lower than the axial
intensity as in single-phase liquid flow. In turbulent single-phase
flow, the radial intensity reaches its peak farther from the wall
than does axial intensity—a well-known feature that is readily
seen in these two figures. No such characteristic could be dis-
cerned in the boiling flow case, at least up to our measurement
location closest to the heated wall.® The minima in the axial
and radial intensity profiles were near the boiling layer edge,
although the flat distributions here made the locations of the
minima somewhat uncertain. It should also be noted that both
the intensities remained high well into the all-liquid region. We
expect the intensity profiles for the boiling and single-phase
liquid flows to merge sufficiently close to the outer wall.

Figure 3(i) shows the radial distribution of (uv),, ~ axial
Reynolds shear stress in the liquid phase of the subcooled boil-
ing flow, heated single-phase liquid flow, and isothermal liquid
flow. The characteristics of the two single-phase liquid flow
distributions have been discussed by Velidandla et al. (1996b).
In the case of subcooled boiling flow, a dramatic shift of the
zero shear stress location toward the heated wall can be seen.
This Iocation is well inside the boiling layer and near the loca-
tion of maximum liquid mean axial velocity, Fig. 3(d). The
magnitude of (uv), increased sharply close to the inner wall.
There may well have been an increase in the wall shear stress,
notwithstanding the decrease in liquid density in the vicinity
of the wall because of higher temperature, although a definite
conclusion can not be made due to data scatter.

A measure of the degree of correlation between u and v is
given by

(1)

Figure 4 shows plots of this correlation coefficient for the sub-
cooled boiling flow as well as the two single-phase liquid flows.
There occurred some reduction in the magnitude of C,,, in the

heated liquid flow compared to the isothermal liquid flow over

8 It was not possible in boiling flow to measure the liquid velocity as close to
the inner wall as in single-phase liquid flow because of a substantial reduction in
LDV data rate. This reduction is due to the reflection and refraction of incident
and scattered light by vapor bubbles in their paths, as well as thermophoresis of
the seed particles.
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Table 3 Quantities for which radial distributions were
measured at the measurement plane

Flow Regime

Single-phase liquid flow Subcooled boiling flow

— Vapor fraction

Mean temperature Mean temperature—fluid*,
liquid

Temperature fluctuation
intensity —fluid, liquid

Mean axial velocity —
liquid, vapor

Mean radial velocity—
liquid

Axial velocity fluctuation

Temperature fluctuation intensity
Mean axial velocity
Mean radial velocity

Axial velocity fluctuation

intensity intensity —liquid, vapor
Radial velocity fluctuation Radial velocity fluctuation
intensity intensity —liquid

Single-point cross-correlation wv
(~axial Reynolds shear stress)

uv—liquid

* By the term fluid we mean liguid when in the all-liquid layer and
liguid and vapor when in the boiling layer.

the inner half of the annulus. The reduction in the magnitude
of Ca), inside the boiling layer is, however, more dramatic.

Scrutiny of the liquid velocity data suggests that the near-
wall region velocity field undergoes significant changes when
boiling occurs. The wall laws for isothermal liquid flow (Veli-
dandla et al., 1996b) and heated single-phase liquid flow (Zarate
et al., 1997) are no longer valid. Preliminary calculations also
indicate that a general wall law may not exist in subcooled
boiling flow.

We now briefly discuss some of the physical implications of
the subcooled boiling flow velocity field measurements shown
in Fig. 3. The liquid velocity field is discussed first.

The turbulence was found to be inhomogeneous and anis-
tropic, which is to be expected. The azimuthal velocity fluctua-
tion was not measured but, as in single-phase flow, the axial
velocity fluctuation intensity was generally much higher than
the radial velocity fluctuation intensity. This suggests that as in
single-phase flow, turbulent energy is produced primarily in the
axial fluctuation mode.

It has been suggested that two-phase flow turbulence is the
result of nonlinear interaction between wall turbulence and bub-
ble-induced pseudo-turbulence, the latter being perturbations
due to random stirring of the liquid by the bubbles (Lance and
Bataille, 1991) and deformation of their surface. It has been
conjectured that these perturbations are proportional to the local
vapor fraction and the square of the vapor bubble velocity rela-
tive to the liquid, and that they contribute directly to the normal
Reynolds stresses only. Through dynamic interactions, they
contribute to the Reynolds shear stresses.

The sign and magnitude of the radial gradient of the liquid
mean axial velocity (i.e., the mean strain rate) in conjunction
with the sign and magnitude of the axial Reynolds shear stress
in the liquid have important implications vis-4-vis the produc-
tion of turbulence. In experiment 1, these signs were such that
production of turbulence could be expected across the annulus
at the m.p. The axial Reynolds shear stress magnitude increased
sharply near the inner wall where the vapor fraction was high,
as was the radial gradient of liquid mean axial velocity. The
turbulence energy production rate per unit fluid volume is

= pro (W), 8_U‘I‘ .

2
or ()

The high vapor fraction served to diminish the production rate,
whereas the high Reynolds shear stress and mean strain rate
augmented the production rate in the wall vicinity.
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The turbulent energy dissipation rate would also be expected
to increase near the inner wall. Invoking the analogy with sin-
gle-phase flow, an estimate of the dissipation rate in the liquid
per unit liquid mass may be obtained by ( Tennekes and Lumley,
1972)

(3)
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Fig. 3 Measurements—Experiment 1
where [ represents the largest length scale of turbulence. Higher
dissipation rates can thus be associated with the larger values
of u} observed.

In the absence of azimuthal velocity fluctuation intensity
measurement, the liquid turbulent kinetic energy per unit liquid
mass may be estimated by assuming wi? ~ % v}? (based on
the isothermal air flow data of Brighton and Jones, 1964):

kLm%(ui2+2.5 vi?). 4)

An estimate of the characteristic turbulence length scale in the
liquid may be obtained from (Wilcox, 1993)
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Fig. 4 Correlation coefficient C(,, —Experiment 1 and two single-
phase liquid flows
k3
AL =~ 009 =, (3)
€L

In the boiling layer, A, was found to be of the order of 0.5 mm.
The Kolmogorov length scale (Tennekes and Lumley, 1972)

1
vi\'*

= |—
€L

was estimated to be of the order of 0.05 mm.® The latter length
scale was smaller compared to that in the heated and unheated
single-phase liquid flows. As such, turbulent energy would be
expected to be present to higher frequencies in the boiling region
and in at least portions of the all-liquid region. This has been
demonstrated in air-water bubbly flow—for example, Lance
and Bataille (1991).

The turbulence energy per unit volume of the fluid (vapor
and liquid) may be approximated by

(6)

[prack, + u,a;] (7)
neglecting the turbulent kinetic energy of the vapor phase. The
first term in the above expression represents the turbulent kinetic
energy of the liquid, and the second term the interfacial (bubble
surface) energy (Serizawa and Kataoka, 1990). One may envi-
sion interchange between these two forms of energy. For in-
stance, turbulent kinetic energy would be transferred to surface
energy as a result of either bubble surface distortion or bubble
splitting.

Herringe and Davis (1976) suggested a simple method of
estimating the expected mean bubble diameter in isothermal
gas-liquid flow in which it is assumed that the turbulence energy
of the two-phase mixture is partitioned equally between the
turbulent kinetic energy of the liquid and the interfacial energy.
On this basis, one obtains

_ 6o

p = . (8)
! Puky

We must keep in mind, however, that the situation is more
complicated in boiling flow because of wall nucleation and
evaporation/condensation at bubble surface. Nevertheless, it is
interesting to compare the estimate obtained from Eq. (8) with
the mean bubble diameter calculated from the measured proba-

® The Kolmogorov length scale was not resolved in our LDV measurements.
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Fig.5 Mean vapor bubble diameter—Experiment 1 and theoretical esti-
mate

bility density function of the diameter."® Figure 5 shows this
comparison for experiment 1. While the agreement is reasonable
in part of the boiling layer, the feature of smaller bubble diame-
ter in the wall proximity found in our experiment is not captured
by Eq. (8). Statistically meaningful bubble diameters could not
be measured in the outer part of the boiling layer because the
bubble passage rate was too low. As such, data for this region
does not appear in Fig. 5.

In the remainder of this paper, measurements at the same
m.p. are presented for experiments 2 through 4. The measure-
ments have the same qualitative features as those of experiment
1. The radial distributions of liquid mean temperature, tempera-
ture fluctuation intensity, and mean radial velocity have not
been included for reasons of brevity.

Figure 6(a) contains the vapor fraction radial profile for the
three experiments.'' This is followed by Fig. 6(b) in which the
radial profile of liquid mean axial velocity is shown for five
experiments: the three subcooled boiling flows; heated single-
phase liquid flow at the same mass velocity, inlet temperature,
and wall heat flux of 16,000 W/m?; and isothermal liquid flow,
also at the same mass velocity and inlet temperature.'? The
changes in the velocity profile brought about by boiling are
qualitatively similar to those in experiment 1, Fig. 3(d). In the
subcooled boiling flows, the liquid mean axial velocity within
the boiling layer increased slightly as the extent of boiling in-
creased at higher wall heat flux. Near the heated wall, the radial
gradient of liquid mean axial velocity increased with increases
in local vapor fraction. However, the location of maximum axial
velocity did not change significantly in the three boiling flows.
It is useful to view these liquid axial velocity profiles in conjunc-
tion with the corresponding vapor bubble mean axial velocity
profiles, Figs. 6(c)—(e).

Examination of the vapor mean axial velocity distribution in
Figs. 6(¢) - (e) indicates that the maximum vapor axial velocity
progressively increases with increases in wall heat flux (i.e.,
with increased vapor fraction in the boiling layer). However,
the radial location of the maximum velocity did not change
significantly.

Radial distributions of liquid axial velocity fluctuation inten-
sity for experiments 2 through 4 are contained in Fig. 6(f).
Also shown are the intensity distributions for the corresponding
heated and isothermal single-phase liquid flows. The trends are
generally similar to those in experiment 1, Fig. 3(g). Three

' The mean bubble diameter is defined here to be the probability density
function-weighted linear sum of all diameter values.

" These profiles were also given in Roy et al. (1994). They are included here
for completeness of presentation.

"> Mass balances for these five experiments were to within 1 percent.
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additional features should be pointed out: first, the intensity
level increased from experiment 2 through experiment 4 across
the boiling layer; second, the intensity became more uniform
radially from experiment 2 through experiment 4; and third, the
intensity profiles for the three experiments merged close to the
heated wall.

In Figures 6(g)— (i) we present the radial profiles of vapor
bubble axial velocity fluctuation intensity for experiments 24,
respectively. The corresponding liquid axial velocity intensity
profiles are shown for comparison. It is apparent that the vapor
axial velocity intensity was significantly higher than the corre-
sponding liquid velocity intensity. This is not surprising in view
of the low inertia of the bubbles. The vapor velocity intensity
was especially high in the higher vapor fraction region of the
boiling layer, and increased with wall heat flux (i.e., with vapor
fraction) in this region. The vapor velocity intensity approached
the liquid intensity near the boiling layer edge. Local informa-
tion on vapor bubble mean axial velocity, axial fluctuation inten-
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sity, and bubble passage frequency can be used to estimate the
local, time-averaged interfacial area concentration &; (Kataoka
et al., 1986; Roy et al., 1994).

Figure 6(j) contains the radial profile of liquid radial velocity
fluctuation intensity for the three subcooled boiling flows, the
heated liquid flow, and the isothermal liquid flow. The radial
intensity remained significantly lower than the axial intensity
in each of these experiments. The three features pointed out
earlier in the context of the liquid axial velocity intensity distri-
bution, Fig. 6(f), are observable here as well.
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Figure 6 (k) shows the radial distribution of (%v), for experi-
ments 2—4, the heated liquid flow, and the isothermal liquid
flow. The main characteristics of the profiles for the three boil-
ing flows are similar to those of experiment 1, Fig. 3(i). As
the wall heat flux was increased, the zero shear stress location
moved closer to the inner wall. The radial gradient of (uv),
became larger (i.e., the increase in the magnitude of (uv).
became sharper) near the inner wall and became progressively
larger as the vapor fraction in this region increased with wall
heat flux. The magnitude of (4#v), became higher in the region
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outside the zero shear stress location as the wall heat flux in-
creased and the radial extent of the boiling layer became larger.

Comparison With the Calculations of a Multidimen-
sional Two-Fluid Model

The experimental results have been compared with the calcu-
lations of a three-dimensional two-fluid model of turbulent sub-
cooled boiling flow incorporated in the computer code ASTRID
(Briere et al., 1995). This code has been under development
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in the Two-Phase Flow Research Group of Electricité de France
(EDF) during the past several years.

In the model, the averaged local field equations (mass, mo-
mentum, thermal energy) for each phase (vapor, liquid) are
derived from the corresponding instantaneous local equations
by density-weighted averaging (Ishii, 1975; Drew, 1983).
These are complemented by the local interfacial balance equa-
tions for mass, momentum, and thermal energy. Closure rela-
tions are provided for the interfacial transfer rates of mass,
momentum, and thermal energy as well as the turbulence terms
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Fig. 6 Measurements—Experiments 2, 3, and 4

in the field equations. The equations and closure relations can
be found in Simonin and Viollet (1989), That Vanetal. (1994),
and Briere et al, (1995).

The model for the liquid phase turbulence is comprised of
the transport equations for the per unit liquid mass turbulent
kinetic energy (k,) and kinetic energy dissipation rate (€,) in
conjunction with the eddy diffusivity concept. Each transport
equation is modified from the corresponding single-phase form
of the equation by provision of an additional source term which
embodies the influence of the vapor bubbles. The fluctuating
motion of the bubbles is simulated by extending Tchen’s theory
of particle dispersion in turbulent flow.

The near-wall region is treated by the wall function approach.
For the calculations reported here, a wall law concocted from
our isothermal single-phase liquid flow data for the same annu-
lar channel (Velidandla et al., 1996b) is used at the inner wall
proximity in lieu of one, as yet undetermined, which may be
more appropriate for subcooled boiling flow:

ut =2631Iny* +59. (9)
This wall law corresponds to a Von Karman constant of 0.38.
At the outer wall of the annulus, the standard wall law for pipe
flow with Von Karman constant of 0.40 is adopted. The wall
heat transfer model follows the approach of Kurul and Podowski
(1991).

Space discretization follows a structured mesh with a collo-
cated arrangement of velocity components. Either finite differ-
ence or finite volume method can be used in this code to obtain
the discretized equations. The former method was chosen for
the calculations reported here.

In our application, the flow through the annular channel is
assumed to be a two-dimensional (r, z) mean flow.

Care needed to be taken in constructing the computational
grid such that along any coordinate the ratio between consecu-
tive grid sizes is in the 0.7—1.3 range. Also, the ratio between
two grid sizes orthogonal to each other and sharing a node was
no larger than 15. Furthermore, since a wall function is used,
the normal distance between the wall and the first node in the
fluid should be such that the corresponding y + would be greater
than 30. These criteria were met in our calculations and the
results did not change perceptibly upon further grid refinement.
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For experiments 2, 3, and 4, Figs. 7(a)—(d) show, respec-
tively, comparisons of vapor fraction, time-mean liquid and wall
temperatures, liquid mean axial velocity, and vapor mean axial
velocity calculations using ASTRID with our measurements.
The agreement is reasonable away from the inner wall, but
further work clearly remains to be done in modeling the near-
wall velocity field and wall heat transfer.

Concluding Remarks

The measurements and calculations reported in this paper are
one part of a continuing study of turbulent subcooled boiling
flow. The study is motivated by the realization that a correct
model for such flow can be developed only when its many
complex features are properly understood.

Our measurements in a vertical annular channel indicate that
the liquid velocity field in turbulent subcooled boiling flow is
significantly different from the velocity field in turbulent single-
phase liquid flow, heated or unheated, at comparable mass ve-
locity. The mean axial velocity distribution is different and the
turbulent kinetic energy is much higher in subcooled boiling
flow. The zero crossing of the axial Reynolds shear stress occurs
much closer to the heated inner wall and the shear stress magni-
tude increases sharply near the wall. Higher rates of turbulent
energy production and dissipation would be expected in this
region.

The liquid phase turbulence is inhomogeneous and aniso-
tropic as in all turbulent shear flows. While bubble-induced
pseudo-turbulence contributes to the overall turbulence mea-
sured, it is unclear how this contribution can be isolated.

Characterization of the near-wall distribution of the liquid-
phase velocity field will require further study. It appears at this
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Fig. 7 Comparison of model calculations with measurements—Experi-
ments 2, 3, and 4

time that a wall law for the mean axial velocity akin to turbulent
single-phase flow does not exist. .

Numerical simulation of the subcooled boiling flow experi-
ments by the multidimensional two-fluid code ASTRID (under
development at EDF) yielded reasonable agreement with our
measurements, except close to the heated inner wall. Further
modeling work is in progress.
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Calcium Carbonate Scale
Formation During Subcooled
Flow Boiling

Scale deposition on the heat transfer surfaces from water containing dissolved salts
considerably reduces fuel economy and performance of the heat transfer equipment.
In general, this problem is more serious during nucleate boiling due to the mecha-
nisms of bubble formation and detachment. In this study, a large number of experi-

ments were performed to determine the effect of fluid velocity, initial surface tempera-
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ture, and bulk concentration on the rate of calcium carbonate deposition on heat
transfer surfaces during subcooled flow boiling. A physically sound prediction model
for the deposition process under these operating conditions has been developed which
predicts the experimental data with good accuracy. Two previously published models

are also discussed and used to predict the experimental data.

Introduction

Evaporation of water containing dissolved salts is common
practice in most concentration, crystallization and separation
processes. In many desalination plants for the production of
fresh water, sea water with high dissolved electrolyte content
is evaporated. Fouling is one of the most expensive problems
in these desalting units. This problem causes the efficiency of
the evaporator to decrease drastically and limits the widespread
production of large quantities of fresh water. Scaling can typi-
cally degrade the performance of heat exchangers by as much
as 80 percent and can sometimes cause complete failure, as
stated by O’Callaghan (1986). Therefore, it is important for
designers and users of heat transfer equipment to understand
the fundamental processes and parameters that affect the rate
of fouling in heat exchangers.

Fouling is a function of time starting from zero and proceed-
ing along some pseudoasymptotic or linear relationship. Using
a constant value for the fouling resistance at the design stage,
which is a common practice in designing heat exchangers, can
predict what will happen to the heat exchanger performance but
not when it will happen (Miiller-Steinhagen, 1993). Thus, it is
likely that the equipment will have to be taken out of service
for cleaning at an inconvenient and economically undesirable
time. Rational design procedures for a heat exchanger subject
to fouling should allow not only the forecasting of how much
fouling deposit will build up, but also the time and the extent
to which this will happen (Sanatgar and Somerscale, 1991).

Calcium is the most common metal ion present in water. It
exists in varying concentrations in virtually all natural waters
(Wiechers et al., 1975) but is particularly evident in under-
ground and surface waters derived from dolomitic areas and
often in effluent from domestic and industrial areas. The pres-
ence of anions such as CO;3? in these waters will cause the
formation of solid CaCOs if the ionic product [Ca*?].[CO3?]
exceeds the solubility product Kgp. Calcium carbonate has an
inverse solubility in water and hence preferably crystallizes on
heat transfer surfaces. The calcium carbonate layer imposes an
additional barrier to heat transfer, i.e., a fouling resistance.

The main objective of this investigation was to study system-
atically the CaCO, fouling during subcooled flow boiling by
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measuring the overall heat transfer coefficient over a wide range
of flow velocities, bulk, and initial heat transfer surface tempera-
tures and fluid bulk concentrations. After clarification of the
effect of these parameters on the deposition process, a predictive
model for CaCO; fouling rates under subcooled flow boiling
has been developed.

Previous Works

Several investigators have studied deposition mechanisms
during forced convective heat transfer, but hardly any informa-
tion is available on fouling during subcooled flow boiling. Oufer
and Knudsen (1993) and Fetissoff (1982) investigated fouling
during subcooled flow boiling of organic fluids. However, their
results did not lead to any generalized conclusions and can not
be applied for scale formation from aqueous solutions. Sub-
cooled boiling can occur over a considerable length of the evap-
orator tubes and may represent up to 50 percent of the total
heat duty (Wenzel, 1992). In this mode of heat transfer, vapour
bubbles are generated at the heat transfer surface, while the
bulk temperature of the liquid is still below the saturation tem-
perature of the solution. Bubbles detaching from the heat trans-
fer surface collapse and condense in the subcooled liquid bulk.

Hasson and Perl (1981) and Gazit and Hasson (1975) ana-
lyzed the mechanism of CaCOs; scale deposition from a laminar
falling film under evaporative nonboiling conditions. They pre-
sented theoretical models, taking into account the effects of
water composition and hydrodynamic conditions. Based on the
analysis of the experimental results they concluded that diffu-
sional effects can be of importance even in thin-film flow.

Hasson et al. (1968) investigated calcium carbonate scale
deposition on the surface of an annular constant heat flux ex-
changer. They examined the effect of parameters such as flow
velocity, scale surface temperature, and water composition on
scale growth by measuring the scale deposition rates and con-
cluded that in the range of experimental parameters of their
investigation, CaCO; deposition is mainly controlled by the
diffusion of Ca*? and HCOy5 ions.

Chan and Ghassemi (1991) used conservation equations and
surface reaction kinetics to model scaling of heat transfer sur-
faces by calcium carbonate. They conclude that using multispe-
cies crystallization reaction rates in conjunction with their
model predicts the calcium carbonate fouling rates with good
accuracy.

Sheikholeslami and Watkinson (1986) studied the scaling of
calcium carbonate on the surfaces of plain copper and mild steel
heat exchanger tubes and on an externally finned mild steel tube.
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Fig. 1 Schematic drawing of test apparatus

In most of their experiments they observed a linear increase in
Ry values with time under constant heat flux. It was found that
the deposition rate is clearly higher on the plain tube at equal
velocity and that for both steel tubes the rate generally decreases
with increasing velocity for V > 0.3 m/s. They also mentioned
that falling scaling rates with increasing velocity are commonly
found where particulate fouling dominates or where deposits
are fragile. Nevertheless, they used Hasson’s ionic diffusion
model to predict their experimental results, even though this
model predicts increasing scaling rates with increasing velocity.

Watkinson and Martinez (1975) studied the effects of flow
velocity and bulk temperature on calcium carbonate scaling on
copper heat exchanger tubes under constant wall temperature
conditions. They found that with increasing flow velocity, the
fouling resistance first increases, then passes through a maxi-
mum, and finally decreases. At constant inlet temperature, tube
diameter was found to have a weak effect on fouling resistance
due to the difference in average liquid temperature as the diame-
ter is changed. They used a model based on the models by
Reitzer (1964) and Kern and Seaton (1959) and added a re-
moval term to correlate their results,

Experiments

Test Rig. Measurements were performed in a flow boiling
apparatus as shown in Fig. 1. A detailed description of the test

Nomenclature

rig is given by Wenzel (1992). To prevent corrosion, all wetted
parts were manufactured from stainless steel. Boiling occurred
at the outside of the heater rods with the following dimensions:

diameter of heating rod  1.067 cm
annular gap 1.473 cm
length of heating rod 40.0 cm
length of heating section 10.0 cm

Each test heater consists of two concentric tubes with close
tolerances. A miniature stainless-steel sheathed resistance heater
is fitted into the center of the inner tube. Four stainless-steel
sheathed E-type thermocouples are embedded along the circum-
ference of the inner tube. Boiling measurements with distilled
water reproduced published data within =7 percent.

A microcomputer-controlled data acquisition system was
used to measure pressure, flow velocity, heat flux, and tempera-
tures at given time intervals. The power supplied to the test
heaters is calculated from the measured current and voltage
drop. The average of five readings was used to determine the
difference between the wall and bulk temperature for each ther-
mocouple. The temperature drop between the location of the
wall thermocouples and the heat transfer surface was deducted
from the measured temperature differences according to

s
Ts'_Tb=(TTC"'Tb)_Xq- (1)

The average wall superheat was the arithmetic average for
three thermocouple locations. The remaining wall thermocouple
was used for control purposes. The heat transfer coefficient a
was then calculated from

g
= . 2
“Tr -, 2)

The temperature measurements were accurate within +0.2K
and error involved in the heat flux measurement was +2 percent.
Based on the definition of the fouling resistance (Eq. 7), this
means that its uncertainty varies between infinity at the begin-
ning of the experiment and about 7 percent at the end, if the
ASME procedures for error analysis are used.

Experimental Procedure. A 55 litre charge of calcium car-
bonate solution with predetermined concentration was placed
in the supply tank. The pump was switched on and the test rig

C = concentration, kg/m?
- d = diameter, m

R = radius of annulus, m
Re = Reynolds number

Subscripts/Superscripts
aq = aqueous bulk

D = diffusivity, m*/s
E = activation energy, J/mole
J = friction factor
F = coefficient in Chen model
K = specific reaction rate constant
k = radius ratio of rod heater to outer
tube
km = Von Karman constant (=0.418)
in Eqgs. (22) and (23)
K., = solubility product mol?/1tr?
n = rate of mass deposited, kg/m?.s
n = exponent in the Eq. (8)
NBEF = nucleate boiling fraction defined
in Eq. (10)
g = heat flux, W/m?
R = universal gas constant J/mol.K
R, = reaction in bulk of liquid
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R; = fouling resistance, m’K/W
S = suppression factor in Chen model
s = distance between thermocouple lo-
cation and heat transfer surface, m
Sc = Schmidt number
T = temperature, K
t = time, s
V = fluid velocity, m/s

Greek symbols

« = heat transfer coefficient, W/m2.K

B = mass transfer coefficient, m/s

v = concentration effect in Eq. (15)

A\ = thermal conductivity, W/m.K

A\ = zero shear stress location in
annulus, defined in Eq. (24)

p = density, kg/m?

7 = shear stress, N/m?

bub = bubble
d = deposit
eq = equivalent
f = fouling
fb = flow boiling
fc = forced convective
g = gas

i = interphase
nb = nucleate boiling

S = solid
S = surface

TC = thermocouple
* = saturation
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Table 1 Range of operating parameters

Velocity Bulk -Initial Surface Solution pH
m/s temperature | temperature [Ca"} mol/}
°C °C
0.6-1.8 80 105-120 0.0035 - 0.0075 | 7.2-7.7

left to equilibrate at a selected bulk temperature and flow veloc-
ity. After steady-state conditions were reached, a sample of the
solution was taken. Then the selected heat flux, initial surface
temperature, or difference between bulk and initial surface tem-
perature were adjusted, and the experiment started. All tempera-
tures and flow velocities were recorded with a personal com-
puter in connection with a data acquisition system. For safety
reasons, the fouling runs were terminated once the surface tem-
perature of the heater exceeded 170°C. The concentration of
calcium ions, the total alkalinity, and the pH of the solution
were measured at the beginning and at the end of each run, and
the average values were used for the calculations. Total alkalin-
ity was measured by titration with a dilute solution of hydro-
chloric acid, and the calcium concentration was determined by
EDTA titration (Skoog et al., 1992). All chemicals used in this
investigation had a purity above 99 percent. Solutions were
prepared for each run by dissolving the respective salts in dis-
tilled water and allowing it to stand for about 12 hours. The
range of the experimental parameters is given in Table 1.

Test solutions. In this investigation, calcium carbonate was
used as solute. Due to the hardness and adhesion characteristic
of CaCOs, it is expected that any removal of deposit would be
insignificant (Hasson et al., 1968). Calcium carbonate crystals
exist in three forms: aragonite, calcite, and vaterite. All three
forms of this salt have an inverse solubility with temperature,
as shown in Fig. 2 (Plummer and Busenberg, 1982). Therefore,
the saturation concentration will decrease near the heated sur-
face. If the concentration of the solution exceeds the equilibrium
concentration, crystallization will occur.

Since calcium carbonate crystals do not dissolve easily in
water, calcium nitrate Ca(NOs),.4H,0 and sodium carbonate
Na,COs were dissolved in water, resulting in calcium carbonate
crystallizing on the heat transfer surface. The dissociation of
the various ionic species of sodium carbonate in water are quite
sensitive to the pH of the solution. In the present analysis, pH
of the solutions were low (i.e., pH < 8.5) so that most of the
dissolved carbonate ions are in the form of bicarbonate
HCO3 (Wahl, 1977). The bicarbonate ions undergo the follow-
ing equilibrium reaction in the vicinity of the heated surface
(Hasson et al., 1968):

2HCO; — H,0 + CO,(aq) + CO32, (3)
The CO3? species produced in this reaction react with Ca*?,

0.015
Kg

o

0.012F "
0.009

0.006 |-ttt
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0.003

0 20 40 60 80 100
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Fig. 2 Solubility of calcium carbonate in water as a function of tempera-
ture
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Fig. 3 Typical variation of heat transfer coefficient with time

which has been transported to the surface, to form a CaCO;(s)
deposit on the heat transfer surface.

In studies of CaCQ; deposition, the equilibrium of the H,0O-
CO, system is usually considered (Chan and Ghassemi, 1991).
Knowing the pH of the solution, total alkalinity and the dissocia-
tion constants for carbonic acid, the concentration of CO3? can
be calculated from the following equation:

T.A. - [OH™] + [H"]
2]
K,

where T.A. is the total alkalinity of the solution which is defined
as ‘

[CO; 1% = 4)

T.A. = [HCO3] + 2[CO37%] + [OH"] — [H*]. (5)

K, is the second dissociation constant of CO, in water, defined
by the following equation:

_ [CO3%[H"]
Kk = [HCO;] (6)

Experimental Results

A series of experiments was designed to investigate the effect
of operating parameters such as fluid velocity, initial surface
temperature, and bulk concentration on fouling rates during
subcooled flow boiling. The overall heat transfer coefficient was
measured in each run for time periods up to 10 hours. Figure
3 shows typical measurements as a function of time. The shape
of the measured heat transfer coefficient versus time curve is
characterized by a sharp decrease in heat transfer coefficient at
the beginning of the operating time, followed by steep increase
and subsequent gradual decrease. The increase in heat transfer
coefficient at the early stage of fouling is thought to be due to
the increase in the number of bubble nucleation sites generated
by the deposit (Jamialahmadi and Miiller-Steinhagen, 1993).
Additional nucleation sites increase the turbulence level in the
zone near the heat transfer surface and, therefore, improve the
heat transfer coefficient until the insulation effect of the growing
deposit becomes dominant. A fouling curve shows the relation-
ship between the thermal resistance of the fouling deposit and
the time. The shape of the fouling curves is indicative of the
phenomena occurring during the fouling process. A typical mea-
sured fouling curve in the subcooled flow boiling regime is
shown in Fig. 4. The fouling resistances were calculated from
the heat transfer coefficients at the beginning of each experiment
and the actual heat transfer coefficients after a certain opera-
tional period, according to the following equation:
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After a slight improvement at the beginning of some runs, al-
most all curves show a linear increase in fouling resistance with
time. A linear relationship is characteristic for adherent deposits
and indicates that the deposition rate is constant and that there
is no removal.

Ry (7

Effect of Flow Velocity on Fouling. Many studies have
attempted to determine the effect of flow velocity on scale
formation during forced convective heat transfer. The laminar
sublayer which forms next to the heat transfer surface has a
strong effect on the fouling characteristics. The thickness of
this layer is strongly affected by flow velocity; temperature and
degree of supersaturation are different from those in the fluid
bulk. The mechanism of fouling on the heat transfer surface
can be controlled either by molecular diffusion within this film
or by chemical reaction at the heat transfer surface, or by both
mechanisms. It is generally believed that if fouling is not influ-
enced by diffusional mass transfer, the fouling rate should be
independent of the flow velocity if the fouling surface tempera-
ture remains constant. According to the work of Hasson et al.
(1968) crystallization fouling of calcium carbonate under
forced convective conditions is mass transfer controlled.

The effect of fluid velocity on the fouling resistance is shown
in Fig. 5 for constant initial surface and bulk temperature. For
all velocities, the fouling curves show an almost linear increase
in fouling after the initial period of the experiments when sur-
face nucleation effects are dominant. To determine the control-
ling mechanism, the effect of velocity on scale growth rate
was evaluated over the range of 70 to 160 c¢cm/s for constant
supersaturation and constant bulk and initial surface tempera-
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Fig. 5 Effect of flow velocity on the fouling resistance
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tures. The resuits are plotted as a function of Reynolds numbers
in Fig. 6. At low fluid velocities, the mass transfer boundary
layer thickness is still large and, therefore, molecular diffusion
has a significant effect on the fouling rate. As the fluid velocity
is increased, the boundary layer thickness is decreased and the
mass transfer across the boundary layer no longer affects the
fouling rate, which means the fouling process is more controlled
by the chemical reaction at the surface.

The above considerations apply for convective, single-phase
heat transfer. During subcooled flow boiling, parts of the heat
transfer surface are covered with growing vapor bubbles, de-
pending on the surface temperature or heat flux. It can be as-
sumed that the fouling process in the vicinity of these emerging
bubbles is reaction controlled due to the agitation of the liquid
layer close to the heat transfer surface by the vapor bubbles.

Effect of Fouling Surface Temperature. The variation in
fouling resistance with initial surface temperature at constant
bulk temperature and concentration is shown in Figs. 7 and 8
for two different liquid velocities. The heat transfer surface
temperature has only a small effect on the fouling rate at 90
cm/s, but a significant effect at 140 cm/s. This is in agreement
with the conclusions about the controlling mechanisms dis-
cussed in the previous section. Reaction-controlled fouling
(high flow velocities and/or high bubble densities) is strongly
affected by the surface temperature. Diffusion-controlled foul-
ing (low flow velocities and low bubble densities ) also increases
with surfaces temperature as a result of the decreasing solubility
of CaCO; and the increasing mass transfer coefficients, but this
effect is considerably less pronounced.

Effect of Bulk Concentration. The primary cause of foul-
ing is supersaturation. When the solubility product of Ca*" and
CO;” ions exceeds its solubility value, CaCO, precipitates and
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Fig. 7 Fouling resistances as a function of time showing the etfect of
surface temperature at lower velocities
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forms scale. When the removal rate can be ignored, the rate of
deposition is usually expressed in the following form:

n=k(C, — C*)". (8)

For diffusion-controlled fouling, » is equal to 1, for reaction-
controlled fouling, » is reported to be equal to 2 (Hasson and
Perl, 1981; Hasson et al., 1968). Equation (8) shows that re-
gardless of the mechanism of fouling, the effect of concentration
is strong and it should be more pronounced under reaction-
controlled condition. The effect of CaCO; bulk concentration
at constant bulk and initial surface temperature is shown in
Fig. 9.

Correlation of Data

Most boiling heat transfer models divide the total heat trans-
fer surface into two parts (Lorenz et al., 1974; Mikic and Roh-
senow, 1969; Shoukri and Judd, 1987); namely, the area af-
fected by active nucleation sites, and the remaining heat transfer
area which is controlled by the forced convective heat transfer
mechanism. Chen (1966) suggested an additive correlation
combining the convective and nucleate boiling contributions to
flow boiling heat transfer that has been accepted as one of the
best available correlations for pure fluids and mixtures. In its
basic form, it is expressed as

o = e F + S

9

where ay. is the convective heat transfer coefficient which would
be found for the liquid phase flowing alone, and «, is the
nucleate pool boiling heat transfer coefficient depending on the
wall superheat. In Eq. (9), S is a ‘‘suppression factor’’ to ac-
count for the decrease in nucleate boiling as forced convective
effect are increased. The parameter F accounts for the effective
increase in liquid velocity due to the presence of the vapour
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Fig. 9 Effect of CaCO, bulk concentration on fouling resistance
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Table 2 Operating conditions in some of the fouling experiments

Run ID | Initial Surface Bulk Cone. Velocity NBF $8-10° m/s
Temp.°C mol/l cm/s (10) (36)
171 111 .0064 70 13 11.03
172 111.8 0069 100 8.9 15.09
173 110.4 0069 120 55 17.31
174 t10 0072 160 0.6 21.99
175 109.16 .0069 140 1.5 19.42
176 112.25 .0068 90 5.5 13.88
177 1124 0065 90 9 13.91
179 119 0054 90 16.4 15.10
1710 113.12 0069 120 42 17.92
1711 111 004 120 4.9 17.44
1712 1181 .0037 100 89 14.96
182 110 0069 90 12.5 13.48
184 1116 0072 70 7.1 11.12
186 113.18 0068 140 4.1 20.45
187 110.14 .0065 140 1.9 19.67
188 107 0071 140 0.2 18.88
189 114 0054 140 43 20.66
1810 116 0069 140 53 21,19
1811 109.4 004 70 6 10.81

phase and is a function of the Martinelli parameter (Chen,
1966). The complete set of equations as applicable for the
prediction of local subcooled flow boiling heat transfer coeffi-
cients is given by Collier (1984). This calculation procedure
has been generally accepted as one of the best available for
pure fluids under saturated and subcooled conditions. It has
been shown recently that it can also be used to predict heat
transfer coefficients for subcooled liquid mixtures (Wenzel,
1992). The Gnielinski (1986) equation is used to calculate a.,
and the Gorenflo (1988) correlation to calculate «,,. The Chen
(1966) model is used in this investigation to develop a model
for prediction of fouling rates. The fraction of heat transferred
by nucleate boiling as predicted by this model is defined by
Branch (1991) as

aan

'NBF = (10)

(2473

This parameter may be interpreted as a measure of the per-
centage of the heat transfer area affected by nucleate boiling.
The calculated values for this parameter for some of the present
fouling runs are given in Table 2.

Fouling of the heat transfer surface during subcooled flow
boiling is a combination of the following two mechanisms:

1 In the area which is affected by the vapour bubbles, foul-
ing occurs mainly due to the mechanism of bubble forma-
tion and microlayer evaporation,

2 In the remaining area fouling takes places by forced con-
vective mechanisms.

As shown by Han and Griffith (1965), the area from which the
superheated layers is pumped away by a bubble is nd3. As
shown in Fig. 10, both of the above mechanisms occur in paral-
lel in separate zones of the heat transfer surface. Therefore, the
overall fouling rate can be presented by the following equation:

OR;
ot

(pakg) = NBF ' sy, + (1 — NBF)- #iy.. (an

Where NBF is the nucleate boiling fraction, which can be calcu-
lated from Eq. (10) in conjunction with the Chen model. As
the heat flux increases, the number of active nucleation sites
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Fig. 10 Areas affected by nucleate boiling and forced convection

increases and Eq. (11) predicts that the fouling caused by the
boiling mechanism will increase.

Prediction of #,,. In the boiling zones, vapour bubbles
emerge from distinct nucleation sites and their number increases
with heat flux. Because of the high level of turbulence created
by the departure of the vapour bubbles from the nucleation sites
and the rapid evaporation of liquid beneath the vapour bubbles,
it seems reasonable to assume that the deposition reaction is
rate controlling in the boiling zones. The reaction controlled
scaling rate of calcium carbonate is usually correlated by a
second order reaction as follows:

foy = K ([Ca* " Yo, — [Ca™ %)% (12)

Where [Ca** o s the concentration of the calcium jons be-
neath the bubbles, and the temperature dependence of the reac-
tion rate constant follows an Arrhenius. type equation:

K] = Kl,oe_E/RTS. (13)

Electron Scanning Microscopy revealed that more than 99 per-
cent of the deposited calcium carbonate found in this investiga-
tion was in the form of aragonite, the solubility of which was
studied in detail by Plummer and Busenberg (1982) and other
investigators (Rau, 1982; Wiechers et al., 1975). The equilib-
rium concentration of calcium, [Ca**]*, is given by the square
root of the solubility product, K,,, of aragonite, which is given
by the following equation (Plummer and Busenberg, 1982):

log (K,,) = —171L.9773 — 0.077993*T

+ 2903293 + 71.595«log T (14)

where K, is in molar units, and 7 is the absolute temperature
in degree Kelvin.

Concentration Beneath the Vapour Bubbles. Figure 11
shows a bubble growing from a nucleation site on the heat
transfer surface. Heat transfer to the boiling liquid occurs by
three mechanisms (Jamialahmadi et al., 1989): forced convec-
tion to the liquid; conduction through and evaporation of a
liquid microlayer between bubble and heat transfer surface; and
heat transfer from the superheated liquid boundary layer to the

micro-layer

heat transfer surface

Fig. 11 Bubble growing at heat transfer surface
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Fig. 12 Geometry of the annular test section

vapour bubble. Of these mechanisms, only microlayer evapora-
tion can cause a significant increase in the foulant concentration
beneath the bubble. Therefore, the concentration of ions beneath
the bubbles can be written in terms of bulk concentration as

Cbub = '}’C (15)

Where vy is the concentration effect in the microlayer, which is
difficult to predict exactly. An estimation for the concentration
of ions in the microlayer can be made by assuming that all the
vapour is supplied to the bubble by the vaporization of liquid
from the microlayer. Al-Hayes and Winterton (1981) and Wen-
zel (1992) measured the bubble departure diameter in subcooled
flow boiling of water and reported that it does not exceed 3
mm. Using this value for the bubble departure diameter and 2
um for the thickness of the microlayer, which was reported
by Moore and Mesler (1961) for a hemispherical bubble, the
concentration multiplier vy is 1.48. A value of 1.5 was therefore
used in the following analysis. Substituting this value, and Eq.
(13) into Eq. (12), the final form for the deposition rate in the
area affected by the vapour bubbles becomes

Aoy = Kipe TEF5(1.5[Ca*t] — [Catt]%)2, (16)

Prediction of ;.. As shown in Table 2, most of the heat
transfer in the present investigation occurred by forced convec-
tion. Therefore, one would expect that these zones contribute
significantly to the total deposition process. Several investiga-
tors (Hasson and Perl, 1981; Gazit and Hasson, 1975; Hasson
et al., 1968; Chan and Ghassemi, 1991; Sheikholeslami and
Watkinson, 1986; Watkinson and Martinez, 1975) have at-
tempted to correlate the calcium carbonate scaling rates during
convective, nonboiling heat transfer. In this investigation, two
of these models have been used to predict the convective contri-
bution to the total fouling rate. A third method has been devel-
oped to predict the convective part by combining the diffusion
and reaction terms. The agreement between predicted and exper-
imental values is satisfactory if the model by Chan and Ghas-
semi (1991) and the present model are used. However, there
are considerable deviations between experimental and predicted
results using Hasson’s Ionic Diffusion Model for prediction of
the convective component of fouling.

Chan and Ghassemi Model. This model is based on the
solution of the continuity equation. Figure 12 shows a cross
section of the annular test heater. A constant flow of water with
predetermined concentration of calcium carbonate is maintained
in the gap between the heater rod and the outer tube. Heat
transfer occurs with a constant heat flux, and calcium carbonate
deposition occurs on the surface of the heater rod. The continu-
ity equation for a multicomponent system with constant diffu-
sivity and density becomes

aC;

5 T W VG =D V3G + R, (17)

efy
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At steady state and with no reaction in the bulk of the solution,
this equation reduces to

v'VCi = Dier(V2Cj (18)
and with cylindrical coordinates:
LG, 106 6
“or  'ros g
1d aC, [ 6°C,  8°C
=D |-—|r—)+= -+ . (19
[r or (r 8r> 96 612] ()

For the flow geometry in this study, v, and v, are zero. We also
can assume that there is no significant amount of diffusive mass
flux in comparison to bulk convection in the z-direction due to
the low concentration of the solution. Consequently, Eq. (19)

reduces to
oGC; 10 oG
(F)— =D, | —-— — .
vr) Oz °“[r8r (r 8r>]

This equation is to be solved with the following boundary condi-
tions:

(20)

@r = kR D, %9 = K.([Ca*?] ~ [Ca™]*)*  (21)
r
ac,
r or

@Z=0 C|:C?

Where kR is the heater rod radius. For a fully developed profile
(v, = v,(r)), the mean turbulent velocity distribution in annuli
can be approximated by

1 T 7\2 _ kz 172
—v, = <—° ) In
km \ p k

(N — k)R
r — kR

Uz, max

for r < AR (22)

1 [ "2 R—\R
vz.max—vzza[?o(l_)\z):l In R - 7

for r>\R (23)
according to Bird et al. (1960), where
1 -k

2 In <1>
k

The shear stress at the wall, 7, can be obtained if the friction

factor for the inner wall is known. This factor, f;, for annuli

has been correlated to the flow Reynolds number by Perry and
Chilton (1984) as

A% = (24)

(A? — 2k%)

fe=r i

(25)

where f, the outer wall friction factor, is

0.0791

f2 = [Ref(l _ )\2)]1/4 '

(26)

Then, the wall shear stress may be calculated using

To = fip{v.)?. (27)

A Fortran program was written to solve Eq. (20) based on
a finite difference method for appropriate boundary conditions.
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Fig. 13 Measured and predicted fouling rates for three models

The convective contribution to the fouling rate #;, was calcu-
lated using the solution of Eq. (20) as follows:

) 9C;
Bre = Dinff(-5;> :

The total fouling rate was calculated by using Eq. (28) in
conjunction with Eq. (11). A comparison between predicted
fouling rates and experimental data is shown in Fig. 13. The
average absolute error is 44 percent, which is quite reasonable
for fouling predictions.

(28)

Hasson’s Tonic Diffusion Model. Hasson et al. (1968) de-
veloped a model for predicting calcium carbonate scaling rates,
which is based on diffusion of calcium and carbonate ions from
the fluid bulk followed by crystallization of CaCOj; on the hot
wall: The deposition rate is given by

Hee = Kr([Ca++]i[C03__]i - Ksp)~ (29)

The concentrations of calcium and carbonate at the interface
are eliminated using the mass transfer expressions

fig = B([Ca*™] — [Ca™"]) = B([CO,;] — [CO,))
= 0.58([HCO3] — [HCO3 ) (30)

and the deposition rate at pH < 8.5 (similar to the present case)
is found by solution of the following equation:

L e\ _agae( 1 - e\ (2t
ol e (5 0o) e (1) (55 on

where x = [Ca™"], y = [CO,], z = [HCO5 1, and K, and K,
are the first and second dissociation constants of CO,. If [Ca™*™]
> [COj'], this equation reduces to

172
.0.5ﬁxb<<l + %C) - 1>

Hye = (32)
a .
with
a=1- oKz (33)
KB
bh = X + iKiI&Z_ -+ _IEP_KL (34)
x KB Bx
K,K,z* K,
c = 2sz _ Kpr2'y . (35)
K\Bx Bx
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The mass transfer coefficient 8 was calculated using the equa-
tion developed by Dittus and Bolter (1930):

B = 0.023 Re®® §¢°% 2

eq

(36)

The fouling rate in this model is calculated using Eqs. (32)
and (11). If, pH, total alkalinity and [Ca*"] are known, vari-
ables a, b, and ¢ can be determined to find the fouling rate. In
this model, removal of existing deposit is not considered. Figure
13 shows that there are considerable differences between the
predictions of this model and the experimental data. The predic-
tion of this model is very sensitive to the value of total alkalinity.
During the experiments, this value was not constant and for
prediction purposes the average value of total alkalinity was
used. This may have been the cause of the discrepancy between
experimental and predicted results. Another possibility is that
the agreement between experimental and predicted fouling rates
for this model is not good for fouling rates higher than 10 7% m?K
kI !, as mentioned by Sheikholeslami and Watkinson (1986).

Proposed Model. It is generally assumed that the deposi-
tion of calcium carbonate on the heat transfer surface during
convective heat transfer takes place by a two-step mechanism.
Due to the concentration gradient, Ca** and HCO3 will be
transported from the bulk of the liquid to the heated surface.
At the liquid-solid interface (and in the bulk), HCO; undergoes
the following equilibrium reaction (Hasson et al., 1968):

2HCO3 = Hy0 + COyqy + CO5™. (37)

The CO, formed from this reaction is transported through the
liquid and desorbed at the liquid-gas interface. The CO3? spe-
cies produced in the same reaction reacts with Ca**, which has
been transported to the surface, to form CaCO;(s).

Ca** 4+ CO35~ - CaCOs(s) (38)

This completes the precipitation of CaCOj; scale on the heat
transfer surface. Reactions in Eqgs. (37) and (38) are combined
in the following form (Hasson and Perl, 1981):

Ca™" + 2HCOj; = CaCO;(,) + COyy, + H,0.  (39)
The above processes can be summarized into two steps. In the
first step, calcium and bicarbonate ions are transported to the
heat transfer surface by diffusion through the boundary layer
which is formed between the scale and the solution, according
to the following equation: :

rie = B({Ca™"] — [Ca™ ). (40)

In the second step, these ions react at the surface to form the
solid phase of calcium carbonate. This surface reaction can be
described by
fe = Ki([Ca™] — [Ca™™]*)%, (41)
In these equations, [Ca**], [Ca**]*, and [Ca™*"]; are the
bulk, saturation, and interface concentrations of calcium ions,
respectively, and K| is the reaction rate constant defined in Eq.
(13). By the combination of Egs. (40) and (41) and elimination
of the interface concentration, the deposition rate for the forced
convective part becomes

Table 3 Parameters and physical properties used in this investigation

Ko B Ay Pg
m'kg.s J/mole W/m.K kg/m®
9.8x10" 122150 1.942 2705
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CRTAT L8 e o
\/4[1{,] +[K]:|(c C)] (42)

Therefore, the overall fouling rate under subcooled flow boiling
can be calculated with Eq. (42) in conjunction with Egs. (11)
and (13).

The reaction rate constant and the activation energy in Eq.
(13) are obtained from nonlinear regression analysis of the
experimental data and are summarized in Table 3.

The values of 2705 kg/m® and 1.942 kW/(m.K) for density
and thermal conductivity of calcium carbonate deposits are the
average values reported by Hasson and Perl (1981) and Sheikh-
oleslami and Watkinson (1986). The mass transfer coefficients
used in these calculations are predicted using Eq. (36), with
the diffusivities of Ca*™* and HCOj7 calculated according to
Reid et al. (1988). Based on this procedure, a value of 1.016275
E-9 m*/s at 298 K temperature was calculated for the diffusivity
of Ca** and HCOj ions and extrapolated for different tempera-
tures using the approximate relation (Bird et al., 1960):

Dy, = Dr(T5/T) exp[3.8T,(1/T, — 1/T,)] (43)
where T, denotes the boiling temperature of the liquid, and 7',
and T, are two arbitrary temperatures. The calculated mass
transfer coefficients for some of the fouling runs are presented
in Table 2.

Comparison With Experimental Data

A comparison between predicted fouling resistances using
Eq. (11) in conjunction with the three above convective deposi-
tion models and experimental data is shown in Figs. 14 and 15.
The predicted results are in good agreement with the experimen-
tal data for the proposed model and the model incorporating
the Chan and Ghassemi (1991) model for the prediction of the
forced convective contribution to the total fouling rate. How-
ever, there are considerable differences between experimental
data and prediction of the model using Hasson’s ionic diffusion
model (Hasson et al., 1968) for the forced convective compo-
nent. The fundamental assumptions for the derivation of the
three models are the same. The major difference between the
second model (using Hasson’s ionic diffusion mode) and the
two others is that in the first, the diffusion of both Ca** and
CO7 is considered and the interdependency of these two causes
the model to be very sensitive to total alkalinity. Accurate pre-
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Fig. 15 Comparison of measured and predicted fouling resistances for
three models

diction with the model of Hasson et al. (1968) requires accurate
values of total alkalinity and the diffusivities of the species. In
the two other models only the concentration of Ca*"* is consid-
ered. A comparison between all experimental and predicted
fouling rates for the three prediction procedures is shown in
Fig. 13. The root mean square error of 5 percent and average
absolute error of 22 percent between predicted and experimental
data illustrates the applicability of the model incorporating Eq.
(42). However, it is important to note that independent of the
selected model for the mass transfer controlled deposition com-
ponent, the suggested subcooled flow boiling fouling model
predicts the qualitative effects of flow velocity, bulk tempera-
ture, heat flux, and CaCO; concentration correctly.
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A Predictive Model for
Condensation in Small
Hydraulic Diameter Tubes
Having Axial Micro-Fins

A semiempirical model is proposed to predict the condensation coefficient inside
small hydraulic diameter extruded aluminum tubes having microgrooves. The model
accounts for the effects of vapor shear and surface tension forces. Surface tension
Jforce is effective in enhancing the condensation coefficient as long as the fin tips are
not flooded by condensate. This enhancement increases as mass velocity is reduced.
At high mass velocity the flow is vapor shear controlled and the surface tension
contribution is very small. The surface tension effect is strongly affected by the fin
geometry. A smaller fin tip radius provides a higher surface tension drainage force.
A large cross sectional area in the interfin region will allow the surface tension
enhancement to occur at lower vapor quality. Separate models are developed for the
surface tension and vapor shear controlled regimes and the models are combined in
the form of an asymptotic equation. The vapor shear model is based on use of an
equivalent mass velocity and the heat-momentum transfer analogy. The surface ten-
sion model is analytically based. The model is validated by predicting the authors’
data for two tube geometries using R-12 and R-134a, and the model predicts 95
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percent of the condensation data within *=16 percent.

Introduction

Tube-side condensation is important in the refrigeration, au-
tomotive, and process industries. The refrigeration industry has
developed the ‘‘micro-fin’’ tube, which is used in virtually all
residential, refrigerant evaporators and condensers. It provides
a heat transfer coefficient two to three times that of a plain tube.
Figure 1(a) shows the single helix micro-fin tube having 0.3
mm groove depth. The Fig. 1(a) copper tube is made in diame-
ters between 4 and 16 mm, and is formed by drawing a seamless
tube over a grooved, floating internal plug. The manufacture of
small diameter micro-fin tubes (4.0-5.0 mm diameter) is a
recent development and is reported by Morita et al. (1993 ) and
Tsuchida (1993 ). The same basic enhancement geometry is also
used in brazed aluminum, automotive refrigerant condensers.
However, the extruded aluminum tube is made in a quite small
hydraulic diameter, as compared to the Fig. 1(a) tubes (e.g.,
1-3 mm). Figure 1(b) shows a flat extruded aluminum tube
(3.0 mm minor diameter) having internal membranes that is
used in such automotive refrigerant condensers. The wall and
membrane thickness is typically 0.3-0.5 mm. The internal
membranes provide strength to support high internal pressure.
The Fig. 1(b) tube has 0.20 mm high internal micro-fins. Other
than the hydraulic diameter, the only key difference between
the Fig. 1(a) copper micro-fin tube and the Fig. 1(b) extruded
aluminum tube is that the micro-fins in the Fig. 1(») tube are
axial.

Chapter 14 of Webb (1994) discusses the advances that have
been made in the Fig. 1 tubes used for condensation. Many
studies have reported heat transfer data (evaporation and con-
densation) and pressure drop characteristics for the round, Fig.
1(a) “‘micro-fin’’ tubes. Khanpara et al. (1986) and Morita et
al. (1993) provide qualitative discussion concerning the effect
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of fin tip shape, valley shape, fin height, number of fins, and
spiral angle. However, no significant work has been done to
develop either a correlation or a theoretically based predictive
model to predict the heat transfer or pressure drop in any of
the Fig. 1 micro-fin tubes. Webb and Yang (1995) have reported
R-12 and R-134a condensing coefficients for the Fig. 1(4) and
Fig. 1(d) tubes.

As the technology of enhanced heat transfer advances, in-
creased interest exists in understanding the enhancement mecha-
nism of the various enhancement possibilities. This paper ex-
plains the heat transfer mechanism of condensation in micro-
fin tubes of Fig. 1(#) and Fig. 1(c¢) and proposes a model to
predict the condensation coefficient.

Condensation in Micro-Fin Tubes

Yang and Webb (19964, b) reported heat transfer (condensa-
tion and single-phase) and friction data for R-12 in the Fig.
1(b) and Fig. 1(d). Webb and Yang (1995) extended the work
to include R-134a. Yang (1994) provides R-12 and R-134a
data on two additional geometries. These data were used for
development and validation of the predictive model presented
in this work. The geometries of the 1(b), 1(c), 1(d), and 1(e)
tubes are given in Table 1.

Figure 2 shows the R-12 condensation data for the Fig. 1 (b)
and 1(d) tubes. The condensation coefficient is defined in terms
of the total micro-fin internal surface area. The ability of ex-
isting correlations to predict the data for the Fig. 1(d) plain
tube. These correlations are shown on Fig. 2 as the Shah (1979)
and the Akers et al. (1959) correlations. The tube hydraulic
diameter is used in these correlations. The Shah correlation
substantially over predicts the plain tube data. However, the
Akers et al. correlation provides excellent prediction of the Fig.
1(d) plain tube. Akers et al. proposed that the condensation
coefficient is equal to that for an equivalent all liquid flow
having the same wall shear stress as that of the condensing
flow. Akers et al. proposed that the mass velocity for the equiva-
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lent all-liquid flow that gives the same wall shear stress as the
condensing flow is given by

/2
G,, = G|:(] — X+ x<ﬂ> ] .
P

The equivalent all-liquid Reynolds corresponding to G, is
given by

(D

Gquh
o

The average condensation coefficient for condensation be-
tween x; < x < x; is based on G,, evaluated at the average vapor
quality in the tube. One may obtain a given G, by operating at
low x and high G, or at high x and low G.

Figure 2 shows that, at the same Re,,, the condensation coeffi-
cient for the micro-fin tube is greater than that for the plain tube.
For single-phase flow, Yang and Webb (1996a) found that 4,./ 4,
=~ A;./A;, at the same Re,. However, Fig. 2 shows that with
condensation, A,,/h, > A;./A;,. If only surface shear is responsible
for fixing the condensing coefficient, one would expect that 4,/
h, = Am/A,, for both single-phase flow and condensation. The
Fig. 2 comparison suggests that factors other than surface shear
cause enhancement in the micro-fin tube. Understanding of the
enhancement is facilitated by Fig. 3, which shows the same data
as on Fig. 2, except the ordinate is the Nusselt number (AD,/k)
based on hydraulic diameter. At high mass velocity or low mass
velocity and low vapor quality, the Nusselt numbers for the plain
and micro-fin tubes are nearly equal, The most dramatic difference
occurs at low mass velocity and vapor qualities greater than 0.5.
The Nusselt number sharply increases with increasing vapor qual-

(2)

Re,, =

Nomenclature

ity. We will show that surface tension enhancement is responsible
for the additional enhancement.

For vapor qualities greater than 0.5 the condensate film is
sufficiently thin that part of the fin height penetrates into the
vapor region. Thus, it is not flooded by condensate as shown
in Fig. 4(a). A surface tension, induced pressure gradient acts
to drain condensate from the small radius fin tip into the concave
channel at the base of and between the fins, The knowledge
that surface tension force can enhance condensate on a finned
surface was proposed by Gregorig (1954). The condensation
coefficient is given by 2 = k,/6 for a laminar condensate film,
where § is the condensate film thickness. Surface tension force
acts to maintain a smaller film thickness on the micro-fins than
would exist for vapor shear force acting alone. Hence, surface
tension force will enhance the condensation coefficient if the
fins are not flooded. However, the magnitude of the enhance-
ment will depend on the magnitude of the vapor shear stress.

At low vapor quality the micro-fins are flooded by the con-
densate (Fig. 4(b)), so little or no fin surface is exposed on
which surface tension drainage can act. Then, only vapor shear
force is important. In this case the heat transfer mechanism is
the same as for a plain tube.

Surface tension drainage force provides an additional en-
hancement, which adds to the effect produced by vapor shear.
This effect is significant at low mass velocity (400 kg/m?-s)
for vapor qualities greater than 0.5. At high mass velocity (1000
kg/m*s) this effect is not as strong because the vapor shear
force is much higher at the high vapor qualities.

Proposed Condensation Model
Figure 5 shows a sketch of a typical round micro-fin tube
having triangular micro-fins, Variation of the geometric parame-

A = heat transfer surface, m?

" A, = cross sectional flow area, m?
A.; = cross sectional area of conden-
sate film, m?
A, = core flow area based on D,, m®
A; = flooded surface area, m

Re = Reynolds number, defined where
used, dimensionless
Rep, = Reynolds number, based on hy-
draulic diameter, dimensionless
Re,, = equivalent Reynolds number de-
fined by Eq. (1), dimensionless

7 = coordinate distance perpendicular
to condensing surface, m

w4 = dynamic viscosity g, (of liquid),
1, (of vapor), kg/m-s

v = kinematic viscosity, m?>/s

p = density: p; (of liquid), p, (of

A, = unflooded surface area, m?
b = tube minor dimension, m
d, = diameter over fins of internally
finned tube, m
D,;, = hydraulic diameter of flow pas-
sages, 4LA./A, m
e = fin height, m
f = friction factor, diménsionless
f(y) = a function of the fin apex angle
defined in Eq. (7)
g = acceleration due to gravity, m/s
G = mass velocity in tube, kg/m?>-s
Gy = GL(1 = x) + x(pi/ p,)""],
kg/m>-s
h = heat transfer coefficient, &, (total
mass rate flowing as a liquid),
h, (plain tube), A,, (micro-fin),
h (average), W/m>-K
J = Colburn J-factor, dimension less
k = thermal conductivity, W/m-K
L = tube length, m
Nu = Nusselt number, hD/k;, dimen-
sion less
p = fin pitch, m
Pr = Prandtl number, dimensionless
r = local radius, rad
ro = fin tip radius, rad
r, = fin base radius, rad

2
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Re, = Reynolds number, total mass
flowing as liquid, dimensionless
s = coordinate distance along curved
condensing profile, m
S, = fin geometry defined by Fig. 6, m
S; = length of flooded region, m
Sy, = fin geometry defined by Fig. 6, m
S. = length of fin profile, m
S, = length of unflooded region, m
St = Stanton number, dimensionless
t = thickness of tube wall fin, m
T = temperature: Ty (wall), Ty, (sat-
uration), K
u = liquid film flow velocity, m/s
w = tube major dimension, m
We = Weber number defined by Eq.
(28), dimensionless
x = vapor quality, dimensionless
y = coordinate distance perpendicular
to condensing surface, m

Greek Symbols

« = void fraction, dimensionless

B = helix angle relative to tube axis,
rad or deg

v = apex angle of fins, rad or deg

6 = condensate film thickness, m

I
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vapor), kg/m?

o = surface tension, N/m

7; = liquid-vapor interfacial shear
stress, N/m?

T, = wall shear stress in s-direction
(Fig. 7), N/m?

T,, = wall shear stress based on pressure
drop, N/m?

7, = wall shear stress in z-direction
(Fig. 7), N/m?

Subscripts
exp =measured value
f = flooded

i = designates inner surface of tube
! = liquid phase
L = total mass rate flowing as liquid
m = micro-fin tube
p = plain tube
pre = predicted value
sat = saturation condition
sh = vapor shear
st = surface tension
1 = unflooded
v = vapor phase
w = at tube wall
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(a) Copper micro-fin tube

(&) Extruded aluminum plain tube (D, = 1.33 mm)

Fig. 1 Micro-fin and plain tubes

ters can affect the tube’s performance. The key dimensions of
the fins include fin pitch (p), fin height (e), tip radius (ry),
base radius (7;), apex angle (), and helix angle (8) along the
tube axis. The core diameter d, is defined as the diameter mea-
sured at the fin tips; A, is the tube cross section area; and A, is
the flow core area which is defined as A, = 7d?%/4.

Figure 6 illustrates a cross section of liquid film between two
micro-fins. When refrigerant is condensed in micro-fin tubes,
surface tension force pulls the condensate to the base of the fin.
At high vapor qualities the condensate film is very thin, espe-
cially near the tip of the fins, and the heat transfer coefficient
is very high on the part of the fins exposed to the vapor. At
low vapor quality the void fraction o < A./A., and the micro-
fins are flooded by the condensate. The curvature of the conden-
sate-vapor interface is nearly constant (Fig. 4(5)), so no surface
tension effect exists there.

Because the entire fin perimeter is wetted and acted upon by
vapor shear, one may consider prediction of the vapor shear
component of the condensation coefficient by use of existing
condensation correlations for plain tubes. However, one would
use the hydraulic diameter in the place of the plain tube diame-
ter. Applicable correlations include Carpenter and Colburn
(1951), Akers et al. (1959), Cavallini and Zecchin (1974),
and Shah (1979). As previously noted the Akers et al. (1959)
appears to give the best correlation for the small hydraulic
diameter extruded aluminum tubes of the present interest.

When the fin tips are not flooded (e.g., when a > A,/A,),
other vapor shear and surface tension forces are important. The
resulting heat transfer coefficients averaged over the total sur-
face area can be calculated as

A A
h=h,=*+n-<, 3

1 72 (3)
where A is the total heat transfer surface area, A, is the unflooded
area, A, is the flooded area, and %, and A, are the heat transfer
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Fig. 2 Comparison of condensation coefficient in plain and micro-fin
tubes

coefficients in the unflooded region and flooded region, respec-
tively.

At the limiting condition, A, — 0, the condensation heat trans-
fer coefficient for the flooded area (A;) is equal to the total heat
transfer coefficient (%) at low vapor quality condition. Hence,
the vapor shear dominated equations may again be used to
calculate the flooded area condensation heat transfer coefficient,
hy.

Calculation of Flooded Area Fraction A,/A. Figure 6
shows the liquid film maintained by capillary force within a
microgroove having base angle . It is assumed that the liquid-
vapor interface is a circular arc. Figure 6(a) shows the fin base
radius (r,) and the condensate film surface radius (#,) between
the fins which are given by

Table 1 Tube geometries tested by Yang (1994)

Micro-fin A MicrofinB  PlainA PlainB

Tube Figure 1b 1c 1d 1e
No.ports 4 5 4 10
w (mm) 16 16 16 20
b (mm) 3.0 3.0 3.0 20
A, (mm?) 22.68 26.60 27.27 16.08
A, (mm?) 1849 2275
AJA, 0.815 0.855
AJL (mm)  57.99 76.33 41.36 48.38
D, (mm) 1.56 1.41 2.64 1.33
t (mm) 0.50 0.40 0.50 0.40
Fin e (mm) 0.20 0.30
p (mm) 0.40 0.45
y (deg) 40 40
ts (mm) 0.013 0.060
r, (mm) 0.156 0.060
S, (mm) 0.56 0.10
S, (mm) 0.41 0.30
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Fig. 3 Comparison of condensation Nusselt number in plain and micro-
fin tubes

ty = Sb'tan%

(4)

rf=Sfb'tanz, (5)
2

where S, and S;, are the perimeters shown in Fig. 6(a). From
Fig. 6(b), the cross sectional area (A, ) of the condensate film
surface between the fins is equal to the curved area enclosed
by points ABDE; that is, equal to the difference of the area of
the quadrangle OABC minus the area of the sector OAB and
the quadrangle PDEC minus the area of the sector PDE. Thus,
area A, ;is given by

1 2
- . t ) Y
Ac‘f 2(2 Sf;, Sfb an 2> ) nry

Ty _ 2

1
- 2(5‘8},'6‘1, tan l) ~+ . Ty,

2

Substituting Eqs. (4) and (5) for r, and ry into Eq. (6), the
cross section area A, r becomes

Vapor

Condensate

(b) Low vapor quality

Fig. 4 Cross section through the wall of a micro-fin tube

Journal of Heat Transfer

@ ®&

(© @

Fig. 5 (a) End view of round micro-fin tube, (b) side view of round
micro-fin tube, (c) end view of flat, extruded aluminum micro-fin tube,
and (d) detail of micro-fin geometry

A= S3[t Y _ T2 ¥ n2?
4 f”(“z 2 2

~8tan X - T =Y 2 X
2 2 2

= (87 — SD)f(¥) (7)
where the terms in the parenthesis of the RHS can be expressed
as f(y) which is a function of fin base angle only.

Assuming the film thickness in the unflooded region is very
thin compared to that in the flooded region, the fraction of the
total tube cross section area that is liquid filled, A, /A., is
approximately equal to the liquid volume fraction in the flow,
1 — «. The line Sy, is given by

_ A 2]1/2 [Ac(l - a) 2]1/2
S, = ——+ 5 = | ——t—— 4+ § s 8
1" [f(v) b o ®

(b)

Fig. 6 (a) Cross section geometry of liquid film (b) liquid maintained
within a micro-groove
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where S, is defined by the fin geometry, and the void fraction
« can be obtained from the Zivi (1964 ) correlation at the known
vapor quality.

The flooded and unflooded perimeters (S; and S,) can be
calculated by

Sp= 2(8p — Sp) + np(m — y) 9
Sy = 2(8; — Spp) + ro(m — ). (10)

The length S is also known for the fin geometry. The total
length of the fin profile S,, = S; + S,. The flooded and unflooded
fractions then can be obtained by

i A 11
A - (11)
A, S

Lo 2u 12
A s, (12)

Prediction of Flooded Area Heat Transfer Coefficient 4.
When the fin are flooded there is no surface tension contribution.
The present model assumes an annular flow, hence vapor shear
dominated condensation. The wall shear stress is related to the
heat transfer coefficient for the equivalent single-phase flow
(h.) as proposed by Akers et al. (1959). The mass velocity
(G.,) associated with this equivalent liquid flow is defined by
Eq. (2). The all liquid heat transfer coefficient is written in
terms of the wall shear stress using the heat-momentum transfer
analogy (St Pr*? =f/2) with f = Tw/[(G.,)*/2p)]. The result
is

& P1
h, = Ty — Re, Pr/® =,

L w Dh i ! Ggq
Yang and Webb (1996a) have shown that the single-phase
heat transfer coefficient in the Fig. 1(5) and 1(d) tubes is well
predicted using an appropriate equation for turbulent flow in
tubes based on hydraulic diameter. Akers et al. (1959) used

Eq. (13) with the Seider and Tate (1936) equation to obtain
Baes = 0.0265 g Relf Pr;”?,

h

(13)

(14)

where Re,, is defined by Eq. (1). The present model uses h; =

hAkers .

Prediction of Unflooded Area Heat Transfer Coefficient
h,. Figure 7 illustrates the vapor flow parallel to axial micro-
fins. The condensate film is assumed to be laminar. Coordinate
direction z is in the flow direction. The coordinate direction

Zz

Fig. 7 Vapor shear and surface tension effects on a fin
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along the fin surface (normal to the flow) and normal to the
fin are s and 7, respectively. The condensate film (thickness &)
is drained by both vapor shear and surface tension at velocity
u(n). The pressure gradients (in the condensate film) in the z-
direction (dp/dz) and s-direction (dp/ds) are caused by the
fluid flow and surface tension drainage, respectively.

Assuming dp/ds ® (p; — p,)g, the momentum equations in
the z and s direction with the boundary layer approximations
are

dp %u

- L 15
dZ Hi 87’]2 ‘ ( )
dp 0%u

-~ 4 - =0. 16
4 T H o (16)

The boundary conditions are T, = O at n = é) and T, = T;(T;
is the interfacial shear stress) at n = 6.

Integrating Eqs. (15) and (16), and assuming dp/dz and dp/
ds are independent of 7, we obtain the z and s-direction wall
shear stress components as

(an).. ()
I 677 zn=6 l 677 z,n=0

5
o dz

4 (17)

The corrected equation is
(5., (50)
' 877 sm=8 : 617 s,n=0
dp [°

*dp dp
=0—T,,=f-—d 2 =52 (18
Tl T e, T Y

where T, is the s-direction shear stress at the wall. The s-direc-
tion interfacial shear stress is zero.

Because the shear stress in the z-direction and the s-direction
are perpendicular, the resultant shear stress at the wall (Ty) is

T, = [72 (- Tv)z(dp/ds)zj,l/z'

19
dpldz (19)

Substituting Eqs. (17) and (18) into Eq. (19) and eliminating
the unknown film thickness (&), the resultant wall shear stress
can be written in terms of the z-direction shear stress (7,), the
interfacial shear stress (7;), and pressure gradients,

The wall shear stress in Eq. (19) is related to the heat transfer
coefficient for the equivalent single-phase flow (4,) as defined
by Eq. (14). Substituting Eq. (19) for the wall shear stress Ty
into Eq. (18) we may solve for the composite heat transfer
coefficient, A,.

2712 i
hy = [T§+ (rz—»r,.)2<—dp/ds> ] K Re,, pri Lo

(20)
dpldz D, GZ,

Expanding Eq. (19) into two terms on the right hand side

gives

h? = (7‘2 X Re,, Pr} —PL>2
Dlx ’ Gi{[

dplds\ k v |
+(r, -7 “LRe, Pri?LL] . (21
[(T T)<dp/dz> D, G h
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The first and second terms in RHS of Eq. (20) are the contri-
bution due to vapor shear and surface tension, respectively.
Thus, we may define

By = T, []3‘ Re,, Pr}"* 2L (22)
h ey
dplds\ Kk s P
hy=(1,— T — Re,, Pr;’" —-. 23
g = (T, = T )<dp/dz>Dh €y Pr G (23)

Using the definitions of Egs. (22) and (23), Eq. (21) may

be written as
hi = hy + Rk (24)

The Akers et al. (1959) correlation given by Eq. (14) is used
to predict the vapor shear term hg,.

The surface-tension-drained pressure gradient dp/ds in Eq.
(24) can be obtained by the equation, which assumes linear
surface tension drainage force.

dp d(l/r) (1 /r, —
— =g =g

ds ds Sm

1/r,)

(25)

Using Eq. (25) and the definition of Weber number as follows:

2
We = Gqull (26)
pio
Eq. (23) results in
. 173
B, = T, — Ti ld(l/r) Re,, Pr; . (27)
dpldz ds We

The terms 7,, 7;, and dp/dz can be obtained from measured
single-phase and two-phase flow pressure drop data. The interfa-
cial shear stress is obtained using the Blasius friction factor for
the vapor core. An empirical constant C may be used in Eq.
(27) to obtain a best fit of the experimental data. Including the
constant, Eq. (27) is re-written as

T, — 7, d(1/r) Re,, Pr|"”?
dpldz Y ds We

hy = C (28)

Using Eq. (24) to predict the condensation coefficient inside
micro-fin tubes is easy and asymptotic to vapor shear or surface
tension dominated conditions.

Comparison of Theoretical Model to Experimental
Results

Yang (1994) measured the single-phase and the condensing
heat transfer coefficient of R-12 and R-134a inside two plain
tubes (Fig. 1(d) and 1(e)) and two micro-fin tubes (Fig. 1(b),
and 1(c)). Yang and Webb (1996a) also provide R-12 data
for the Fig. 1(b) and 1(d) tubes. The geometry details are
given in Table 1.

Yang (1994 ) provided an empirical correlation for the single-
phase heat transfer coefficient in the form

Nup;, = C Ref, Pr}”. (29)
For the plain tubes C = 0.052 and m = 0.73, and for the micro-
fin tubes C = 0.10 and m = 0.64.

Equation (29) was applied in place of Aawers (Eq. (14)) to
calculate %, and A, for the present micro-fin geometries. Equa-
tion (28) was used to predict the surface tension term (k).
Substituting these equations into Eq. (3) we predicted the com-
posite condensation coefficient in the two micro-fin tubes. Use
of empirical constant C = 0.0703 in Eq. (28) provided the
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minimum error in correlation of the Fig. 8 data. The ratio of
predicted-to-experimental heat transfer coefficients is shown on
Fig. 8. This figure shows that all of the data for both refrigerants
(R-12 and R-134a) are predicted within 20 percent, or 95
percent of the data are within *16 percent, which is within the
experimental uncertainty range.

Figure 9 shows h,A,/hA (the fraction of composite heat
transfer conductance due to surface tension) plotted versus va-
por quality. At low vapor qualities (x < 0.5) the total fin height
is flooded by condensate so no surface tension effect exists.
When the vapor quality is higher than approximately 0.5, the
unflooded area increases so the surface tension contribution
fraction increases. At the lowest mass velocity (G = 400 kg/
m?s) and the highest vapor quality condition the surface tension
fraction is greater than 0.5. The surface tension drainage force
is larger than vapor shear force at high vapor quality and low
mass velocity. As shown by the theoretical model the surface
tension effect decreases with increasing mass velocity, At G =
1400 kg/m?s the surface tension fraction is very small. At this
condition the condensation mechanism is controlled by vapor
shear.

Figure 9 also compares the surface tension effect on different
fin geometries. The parameters which can affect the surface
tension effect are the fin height (e), tin tip radius (), apex
angle (7y), and the ratio A,/A, (ratio of the core area-to-actual
cross section area). The most important parameter that affects
the surface tension force is the fin tip radius. A smaller fin tip
radius provides a higher surface tension drainage force. Refer-
ring to Table 1, the fin tip radius of micro-fin tube A is only
20 percent that of tube B. This is the principal reason why the
surface tension effect in tube B is not as strong as that for
tube A at the same mass velocity and vapor quality, The other
parameter is the A,/A, ratio. Referring to Egs. (4)-(10), a
higher A,/A, ratio will allow the fin tip to be unflooded at lower
vapor quality. The fin height ¢ and A,/A_ ratio of tube B are
greater than that of tube A, When the vapor quality increases,
the fin tip of tube B is unflooded at lower vapor quality than
that in tube A. The surface tension effect is first present in tube
B at lower vapor quality than that in tube A,

In comparing the surface tension effect of different refriger-
ants, the surface tension of R-12 is 30 percent higher than that
of R-134a at tested condition, Ty, = 65°C. This is why the
surface tension contribution for R-12 is higher than that for R-
134a at same mass velocity and vapor quality (Fig. 9).

Yang and Webb, 1996b provide a method to predict the fric-
tion pressure drop in the Fig. 1(d) through 1(e) tubes.

Conclusions
The Akers et al. (1959) correlation reasonably predicts the
condensation coefficient in the small hydraulic diameter plain

2.0 T T T T T T T
R-12 and R-134a in Micro-fin Tubes
1.8 |- -
T =65°C, q" = 8 kWim?
1.6 - G =400 - 1,400 kg/m? s B
14 | -
12 . . m
g . - NN
£ 10 B LU o G S
=& Y s 4
0.8 o -
06 _
0l R-12 R-134a |
a - Micro-fin A, e =0.2 mm
02 s Micro-fin B, e =0.3mm N
0.0 1 1 i | 1 1 1

0 5 10 15 20 25 30 35 40
Re,, x 102

Fig. 8 Ratio of predicted-to-experimental heat transfer coefficient
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Fig. 9 Fraction of composite heat transfer coefficient due to surface
tension

tubes. However, the Shah (1979) correlation substantially over
predicts.

In micro-fin tubes, surface tension force is effective in en-
hancing the condensation coefficient, especially at low mass
velocity and high vapor qualities. At low mass velocity and
high vapor quality the surface tension effect can be as high, or
higher than, the vapor shear controlled condensation coefficient.
The surface tension effect is also strongly affected by the fin
geometry. A smaller fin tip radius provides a higher surface
tension drainage force. A large cross sectional area in the in-
terfin region will allow the surface tension enhancement to occur
at lower vapor quality.

Based on the equivalent mass velocity of Akers et al. (1959),
and the analogy between momentum and heat transfer, a new
semiempirical model is proposed for predicting the heat transfer
coefficient of flow condensing inside horizontal micro-fin tubes.
The model accounts for the effects of vapor shear and surface
tension forces. The predictive model is an asymptotic type equa-
tion. The condensation coefficient is obtained from separate
correlations for the vapor shear or surface tension dominated
flow. The proposed semiempirical model predicts 95 percent of
the condensation data within =16 percent.
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Experimental Validation of
Continuum Mixture Model for
Binary Alloy Solidification

Experiments were performed with binary metal alloys to validate a continuum mixture
model for alloy solidification. Ingots of two compositions, Pb-20%Sn and Pb-40%Sn,
were cast in a permanent mold, and the solidification process was simulated. Temper-
ature histories were measured during casting, and composition profiles were found
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Professar, in the solidified ingot. Dendritic arm spacings were found from optical micrographs
School of Mechanical Engineering. of the alloy microstructure and used to determine a constant in the Blake-Kozeny
Fellow ASME submodel for the mushy zone permeability in the liquid-solid interaction term of the

momentum equations. Scaling analysis from a previous work and a large uncertainty
in the permeability constant suggested that predictions of the composition are ex-
tremely sensitive to the choice of a permeability model. Three simulations of each
casting were performed using the permeability constant as a parameter, and measured
temperatures and compositions were compared with predictions based on different
model constants. In the region of the liquidus interface, where all of the significant
advection of solute takes place, the results suggest that the Blake-Kozeny model based
on measured dendritic arm spacings significantly underpredicts the resistance of the
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dendritic array to fluid flow.

Introduction

Macrosegregation, the nonuniform macroscopic distribution
of the components of an alloy during solidification, is a defect
which can occur in real metal processing systems. These non-
uniformities, especially when they form high compositional gra-
dients, can be areas of high stress concentration, which cause
cracking when an aluminum or steel billet is extruded or forged
or when an as-cast piece, such as a turbine blade, is severely
loaded in service. Macrosegregation studies in binary systems
have become quite common since the introduction of single-
domain numerical models. These models feature one set of
conservation equations and one set of boundary conditions for
an entire, fixed computational domain, which might contain
solid, liquid, and multiphase regions simultaneously. They are
well established and have been successful in predicting irregular
solidification fronts, channel development, double-diffusive
flow cells in the melt region, and general macrosegregation
patterns. A more complete review is found in Prescott and In-
cropera (1996).

Although there has been a great proliferation of numerical
studies of the macroscopic heat and mass transfer during alloy
solidification using these single domain models, there has been
much less effort expended in gathering quantitative data to
which these predictions can be compared. Most of the experi-
mental work has been performed using aqueous salt solutions
(Prescott and Incropera, 1996). These metal analogues have
been useful in qualitatively observing flow patterns in the trans-
parent melt and the interaction of that flow with the mushy
region. They also are relatively easy to use due to low liquidus
temperatures. While flow visualization and temperature data
have been obtained for these systems, measuring composition
in the final casting is very difficult because of the low melting
points. The saltwater solutions also have much higher Prandtl
numbers than metals and, compared to most commercial metal
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ciate Technical Editor: M, Kaviany.
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alloys, have relatively little primary solidification before the
onset of a eutectic reaction. However, there are very few studies
comparing experimental results taken during metal casting to
predictions of macroscopic heat and mass transfer made with
advanced numerical models.

The first study was by Shahani et al. (1992), who solidified
two different Sn-Pb alloys, one on each side of the eutectic
composition. Rectangular ingots of these alloys were cast hori-
zontally and unidirectionally. The measured wall temperatures
were used as boundary conditions in the numerical model,
which was based on the work of Hills et al. (1983). No tempera-
ture histories were reported, but the composition was measured
by wet chemical analysis at discrete points in each ingot and
compared to the calculated results. Reasonable agreement was
found in the trends of the composition profiles, although the
local experimental compositions differed from the predictions
by up to 4 wt% in the Sn-rich case and up to 7 wt% in the
Pb-rich ingot. Also, due to limited spatial resolution in the
measurements, the A-segregation which the code predicted in
the Pb-rich case was not seen in the experiments.

Prescott et al. (1994) performed experiments to validate a
continuum mixture model (Bennon and Incropera, 1987a; Pres-
cott et al.,, 1991), which they applied to an axisymmetric Pb-
19 wt%$Sn ingot. While the model did not account for nonequi-
librium effects such as undercooling and recalescence, the pre-
dicted transient temperature histories were very similar to the
experimental trends. However, agreement between the composi-
tion measurements, made with atomic absorption spectropho-
tometry at 10 mm radial intervals and three different heights,
and the corresponding predictions were not as good. While
some general trends in the experimental macrosegregation pat-
terns were predicted by the model, there was considerable scat-
ter in the data, which was attributed to a lack of axisymmetry
in the cast ingot. ‘

The purpose of this paper is to present experimental results
for two binary metal alloys and to compare them directly to
calculations performed using a continuum mixture transport
model similar to that described in Bennon and Incropera
(1987a) and Prescott et al. (1991). Particular attention is paid
to the effect of the large uncertainty in the value of the perme-

NOVEMBER 1997, Vol. 119 / 783

Copyright © 1997 by ASME

Downloaded 11 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


mailto:krane@ecn.purdue.edu

ability function in the mushy zone near the liquidus interface.
Ingots of Pb-20%Sn and Pb-40%Sn were cast, and temperature
and composition measurements were made. In each case micro-
graphs of the microstructure were taken to provide dendritic
arm spacing measurements and to provide qualitative data for
comparison to the numerical predictions.

Experimental Methods

Test Cell. Casting experiments were performed in a rectan-
gular stainless-steel (type 304) mold heated by electrical resis-
tance heaters and chilled by water-cooled heat exchangers. A
cutaway view of this test cell is found in Fig. 1. The four side
walls, the bottom plate, and the top flange are welded together.
The two cooled side walls are 89 mm wide, while the adjoining,
longer side walls, which are 19 mm thick, each contains two
embedded 600 W, 120 V Watlow Firerod cartridge heaters. The
lid is bolted to the flange and has holes for the introduction of
thermocouples and nitrogen gas. This gas is used to purge the
atmosphere above the molten ingot so as to reduce oxidation,
to which lead is particularly susceptible.

Two stainless-steel water cooled heat exchangers were
mounted on the 89 mm wide side walls. The air gap between
the mold walls and the heat exchangers, which was fixed at
approximately 0.5 mm, was maintained by wing nuts on
threaded rods embedded in the mold. This gap kept the effective
heat transfer coefficient between the cold plates and the mold
wall low enough to allow solidification of the ingot to occur
over a time long enough for significant buoyancy induced flow
and the consequent macrosegregation to occur, The relatively
high thermal resistance across this gap also prevented continu-
ous steam generation in the cold plates during cooling (a small
amount is generated in the first few seconds of cooling) and
maintained a relatively isothermal heat sink for the mold. Al-
though exact values were not measured, the overall heat transfer
coefficient between the heat exchanger and the mold wall was
estimated to be in the range from 85 to 100 W/m’K (Krane,
1996). While others have measured the heat transfer coefficient
to obtain a boundary condition for their numerical simulations
(Prescott, 1992; Prescott et al., 1994), the boundary conditions
for the simulations in this study came from measured wall tem-
peratures during solidification (cf. Shahani et al., 1992). The
thermal resistance of an air gap between the mold and the
solidified ingot was neglected, as the experimental results taken
in a similar configuration by Reddy and Beckermann (1993)
suggest that this resistance is negligible compared to that
through the mold.

Metal Alloys. The first ingot cast was a Pb-40%Sn alloy.
The ingot was composed of 2.95 kg lead and 1.97 kg tin, stood
80 mm, and had a freezing range (=~50°C) about half that of
the 20%Sn ingot. Because this composition is much larger than
the maximum selid solubility of tin in lead, it has a much more
significant eutectic reaction. The second alloy (Pb-20%Sn) was
selected because the Pb-Sn phase diagram shows a large differ-
ence between the solidus and liquidus temperatures at that com-
position. Larger freezing ranges have been shown in many cases

Nomenclature

to result in higher levels of macrosegregation, which is desirable
for comparing experimental and numerical results. The Pb-
20%5Sn ingot was composed of 1 kg tin and 4 kg lead and, after
solidification in the test cell, stood 75 mm tail.

Temperature Measurements. Type E thermocouples were
used to measure temperatures in the ingot and in the mold walls
during solidification. The ingot and side wall temperatures and
their positions are shown in Fig. 1. Voltages were measured
using an HP 3497A controller and an HP 3456A digital voltme-
ter from an HP 3054A Automatic Data Acquisition and Control
unit. The HP 3497A unit was controlled by a graphical program
written with LABVIEW software and run on an IBM PC/Value
Point with an Intel 486DX central processing unit and a 33
MHZ clock. The voltages relative to an electronic ice reference
point were converted into temperatures using a ninth order poly-
nomial resident in the LABVIEW software. The standard limit
of uncertainty of type E thermocouples is =1.7°C, while the
reference junctions in the multiplexers have an uncertainty of
+0.3°C. Auxiliary experiments using pure lead and pure tin
showed that the thermocouples in the ingot gave temperatures
within =0.4°C of the tabulated melting points of those metals.

Six thermocouple probes purchased from Omega Engineering
were fashioned into a rake, which was inserted into the test cell
as shown in Fig. 1. One thermocouple was placed along the
centerline of the ingot, and all were mounted 9.53 mm apart.
The 0.25 mm wires inside the probes were protected by magne-
sium oxide insulation and a 1.6 mm diameter stainless steel
sheath. The sheath protected the thermocouple tip from contact
with the liquid metal, but the tip was in good thermal contact
with the sheath, giving a.time constant of approximately 1 s.
The mold wall thermocouples were in 1.5 mm diameter stainless
steel sheaths, but had exposed beads.

Casting Procedure. After spraying the inside of the test
cell with a light coat of graphite mold-release, the solid metal
charge was placed in the mold, the air was purged with nitrogen,
and the mold was heated to a temperature near 350°C. Once all
of the solid metal melted, the lid was removed and the liquid
was vigorously stirred. The lid was replaced and the atmosphere
was purged again with nitrogen. The heaters were controlled
manually to achieve initial mold temperatures of approximately
350°C, and then the test cell was allowed to cool naturally
through the insulation. Because heat transfer paths inside the
test cell had much lower resistances than the insulation, the
mold and melt became nearly isothermal quickly, compared to
the overall cooling period. When the test cell cooled to the
desired start temperature and all of the mold and melt tempera-
tures were within 2°C of each other, the water flow was initiated
to begin the quenching process.

For each ingot, three runs were made. During the first run
temperatures were recorded inside the melt, using the thermo-
couple rake, and in the chill walls. When all of the temperatures
in the melt fell below 150°C, which is well below the lowest
possible temperature at which liquid could exist, the cooling
water was turned off. The second experiment was performed
by turning the heaters on, bringing the mold and ingot to well

B = specific buoyancy force (m/s?)
¢ = specific heat (J/kg K)
DAS = dendritic arm spacing (um)
D, = liquid mass diffusion coefficient
(m?/s)
f = mass fraction
g = volume fraction
A = enthalpy (J)
k = thermal conductivity (W/m K)

t = time (s)

(W/m?*K)
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K = permeability (m?)
P = pressure (N/m?)

u = x-velocity (m/s)
U = overall heat transfer coefficient

v = y-velocity (m/s)
V = velocity vector (m/s)
x, y = Cartesian coordinates (m)

Greek Symbols

K, = permeability constant (m?)
4 = dynamic viscosity (kg/s m)
p = density (kg/m?)

Subscripts
1 = liquid
s = solid
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Fig. 1 Vertical section of test cell

above the liquidus temperature, and repeating the cooling pro-
cess. This experiment was performed to confirm repeatability
of the cooling curves. The heating and cooling processes were
performed a third time, with the rake thermocouples removed,
to obtain a casting for composition measurements and metallo-
graphy. More details of the casting procedure and test cell are
in Krane (1996).

Composition Measurements. Once the test cell cooled to
below about 50°C, the insulation and the lid were removed, and
the extracted ingot was cut with a band saw to expose a plane
corresponding to the two-dimensional numerical calculations.
Composition measurements were made in this plane, which was
also examined under a microscope to determine microstructural
features. Before the measurements were made, the surface was
flattened by flycutting with a very sharp, well-rounded tool.

Composition measurements were made by -extracting small
samples from 2— 3 mm deep holes drilled in the plane using
a " bit. The ribbon of metal and other fragments produced by
drilling were weighed and, depending on the depth of cut and
the composition, ranged in mass from 60 to 125 mg (x0.1
mg). After weighing each sample was dissolved in nitric acid,
followed by dilute hydrochloric acid, and finally was diluted
with deionized water to a lead concentration between 10 and
20 ppm. Standards were made in the same fashion with known
amounts of the pure lead. The concentrations of the final solu-
tions were measured using a Perkin Elmer model 3090 atomic
absorption spectrophotometer. The uncertainty analysis used to
obtain the error bars on the experimental composition profiles
is the same as that used by Prescott (1992). Because the time-
consuming nature of this process made measurement of entire
macrosegregation fields impractical, several composition pro-
files were taken across the ingot.

Metallography. Examination of the microstructure of the
cast ingots was performed in order to estimate the permeability
of the mushy zones and to detect the presence of A-segregates.
The sectioned ingot provides a surface parallel to that from
which the composition measurements were made. This surface
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was flycut and sawed into four pieces, each approximately 30—
40 mm by 30 mm. These smaller specimens were first polished
by using a 4—6 pm diamond abrasive with an oil lubricant on a
nylon cloth. After carefully cleaning the surface with deionized
water and acetone, the polishing was completed with a 0.05 ym
alumina abrasive on a Leco B soft cloth. With sufficient pol-
ishing no etching was necessary to see the microstructure with
an optical microscope. A Leco 300 Metallograph microscope
was used to view the samples, and photographs were taken on
Polaroid type 55 film.

Numerical Model

The numerical model used to simulate mass, momentum,
heat, and species transport during the solidification of a binary
alloy was originally developed by Bennon and Incropera
(1987a, b) and refined by Prescott et al. (1991). A scaling
analysis of that model, which systematically eliminated terms
which are negligible everywhere (Krane and Incropera, 1996),
resulted in the following model equations:

@-FV'(pV) =0

Y ()
g oP
5 () + V (pVi) = V- iV —%u B == (2)
0 oP
5 (PV) + V(o) = V4w - %v +piBy =5 ()

%(ph) + V+(pVh) = V-k Vh + V-£V(hs - h)

Cs Cy

SV (V- V(= B)) ()
gmm+vwﬂWU=VmDVﬂ+VmNWﬁ~ﬂ>

— (V= VO = ). (5)

The solid is assumed to be rigid and stationary and the flow
to be two-dimensional and laminar. The laminar approximation
is doubtful only at times before solidification begins, when the
Grashof number based on the ingot height and wall-bulk liquid
temperature difference is O(10%), which is in the transition
region. As the liquidus front progresses and the bulk superheat
is extinguished, the circulation is weakened to the point that
the laminar assumption is valid.

The transport Egs. (1) —(5) are not a closed system, as they
require knowledge of the local temperatures, phase fractions,
and phase compositions. To obtain these quantities, a linearized
Pb-Sn equilibrium phase diagram is employed, using a method
first described in Bennon and Incropera (1987b). This method
is based on the equilibrium lever law, which gives macrosegre-
gation results similar to the nonequilibrium Scheil formulation
(Schneider and Beckermann, 1995).

Because the truly anisotropic nature of a developing mushy
zone is not well understood, isotropic permeability has been
assumed (Bennon and Incropera, 1987b). The Blake-Kozeny
model is of the following form:

g3
KX=I()'=K:K0 : 27
(1~g)

where the permeability constant is evaluated from the secondary
dendrite arm spacing (Asai and Muchi, 1978).

(6)
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Because the purpose of the experiments is to provide data to
assess the continuum mixture model for binary solidification,
it is desirable to match the boundary and initial conditions of
the calculations to those of the experiments as closely as possi-
ble. The computational domains for simulating the two ingots
have 75 X 88 control volumes for the 40 percent Sn and 75 X
82 for the 20 percent Sn and have the same dimensions as the
mold shown in Fig. 1. The domains were truncated at the top
of the experimental ingot (75 mm from the bottom of the cavity
for 20 percent Sn and 80 mm for 40 percent Sn) and at the
midplane of the mold, which is treated as a plane of symmetry.
This symmetry was checked by measuring temperatures in both
chilled walls, which were consistently within 1.5°C of each
other. Because the heat transfer path from the mold directly to
the ingot has a resistance several orders of magnitude less than
that of radiation and convection between the upper mold wall
and the top of the ingot, the top of the numerical domain is
modeled as a free surface which does not transfer heat or mass.
The stainless steel mold is included in the calculations and it
is assumed that the mold and the ingot maintain perfect contact.
While the bottom of the mold is assumed to be insulated, the
vertical mold wall is chilled by the water cooled heat ex-
changers. To simulate this cooling the vertical wall temperatures
measured during the experiments were used as the boundary
condition for the computations by linearly interpolating between
the top and bottom temperatures at each time step. Further
computational details and thermophysical property values are
provided by Krane (1996).

Comparison of Experimental and Numerical Results

In this section, experimental data from solidification of the
two alloys are compared to several numerical simulations. Be-
cause close similarities exist in the temperature histories, macro-
segregation patterns and solidification behavior of the two
alloys, most of the results presented are taken from the 40%Sn
ingot. The ingots were melted and solidified, and temperature
measurements were made in the mold wall next to the water-
cooled heat exchangers and in the ingot itself. The position of
these thermocouples is found in Fig. 1. For 40%$Sn, Fig. 2 shows

-measured temperature histories of the thermocouples embedded
in the left mold wall in Fig. 1 at y = 0.0 mm and y = 76.2
mm. The initial temperature of the mold and liquid is approxi-
mately 239°C (+1°C). Because it is measured very close to the
outer surface of the mold, the temperature drops rapidly in the
short time after cooling begins. As the thermal penetration depth
increases and the heat is extracted from a larger volume, the
cooling rate at the wall slows. As solidification begins the tem-
perature near the top of the ingot (y = 76.2 mm) begins to fall
faster than the temperature in the bottom corner of the mold (y
= (0.0 mm). The corner region of the mold is less affected by

e

LT thermocouple at y=0.0 mm
O thermocouple at y=76.2 mm

T €0
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Fig. 2 Measured mold wall terﬁperatures, Pb-40%Sn
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Fig. 3 Measured ingot temperatures, Pb-40%Sn

the onset of freezing and stays warmer longer because the mold
bottom has a larger thermal capacity and thermal resistance than
the ingot. After freezing begins the two temperatures decrease
at approximately the same rate (~2°C/min). The bottom tem-
perature lags behind that of the top due to the resistance to heat
transfer through the bottom of the mold, which remains the
warmest part of the system throughout the freezing process.
Eutectic freezing begins at 7 =~ 1900 s and is indicated by a
sharp rebound in the temperature caused by the sudden release
of latent heat which occurs in the rapid eutectic reaction. During
the subsequent secondary freezing, the cooling rate is slower
than during the primary solidification, but increases at ¢ =~ 3000
s when the entire ingot has solidified.

The temperatures measured along the midheight of the ingot
(y = 40.0 mm) during solidification are plotted in Fig. 3. After
the sensible cooling of the liquid, solidification begins at ¢ ~
200 s with less than 1°C of undercooling. After a 400 to 500 s
period, during which the mushy zone spreads across the ingot,
cooling rates at the six thermocouple locations become nearly
constant and almost equal. At 1940 s the thermocouple closest
to the chilled wall begins to measure a slight increase in temper-
ature from a minimum of 181°C. This increase is a recalescence
effect due to the onset of eutectic solidification, which spreads
across the ingot and lasts between 350 and 800 s, with the
reaction lasting longer at locations further from the mold wall.
This lower eutectic freezing period is due to an increase in tin
concentration and a decrease in local cooling rates with increas-
ing distance from the cold wall. The first thermocouple (x =
15.9 mm) has complete solidification at 2250 s, and the mid-
plane is totally solidified 750 s later.

After the ingot was cooled, removed from the mold, and
sectioned, micrographs were taken along the top of the ingot
and are shown in Fig. 4. Figure 4(a) is the top corner at the
chilled wall, and the center of Fig. 4(b) is 15 mm from the
mold. In these pictures the lighter areas are the eutectic material
and the darker regions are the primary phase. Both of these
micrographs show a region of eutectic material just below the
top surface of the ingot. In Fig. 4(a), an A-segregate ascends
from the right chilled wall. This segregate, which solidified
after the surrounding dendritic array, was a preferred path for
tin-rich liquid flowing out of the mush and along the top of the
ingot. Further from the chilled wall there is less eutectic material
and the top layer includes some primary phase dendrites, sug-
gesting a lower concentration of tin.

Visual inspection of the surfaces near the mold wall shows
several small regions of mostly eutectic material. These A-segre-
gates are approximately 1 mm wide and most range from 5 to
10 mm long. One segregate, which begins 50 mm from the
bottom of the ingot, is almost 30 mm long. All begin within a
few millimeters of the chilled surface and extend into the ingot
at a roughly 45 deg angle. Figure 5 reveals two such segregates,
which are the lighter shaded regions extending from near the
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x=7.14 mm

A-segregate x=0mm

Fig. 4 Microstructure along top of Pb-40%Sn ingot: (a) top corner at
mold wall; (b) 15 mm from mold wall

chilled wall (x = 0 mm) into the ingot. These regions do not
seem to be continuous, as one might expect. One plausible
reason is that dendrites of the primary solid might grow into
the fluid of the channel, which is relatively stagnant once the
solid volume fraction of the surrounding dendritic array exceeds
approximately 10 percent. Several segregates also appear in a

|x'=7-16mm I

A-segregate

Fig. 5 Micrograph of two channels extending into the Pb-40%Sn ingot
from mold wall on right
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region between 50 and 70 mm from the bottom and 20 to 30
mm from the chilled wall.

Having cast the ingots, measured the cooling curves, and
examined the microstructure, numerical simulations were per-
formed. Other than the change in composition, the use of differ-
ent measured wall cooling curves as a thermal boundary condi-
tion, and different domain heights, calculations for the two
alloys were performed for equivalent conditions. Both sets of
simulations were conducted using the permeability constant, «,,,
as a parameter, with x, = 2.8 X 107" m?, k, = 1.0 x 107"
m?, and k, = 5.0 X 10~ m?. These values were chosen to
show the effect of permeability on macrosegregation. While
there is some uncertainty in the other thermophysical properties
used in this study, the uncertainty in the permeability is much
larger than that of any other parameter. While the thermophysi-
cal properties are certainly known to within an order of magni-
tude, the same claim cannot be made for the permeability, K.
Over the entire mushy zone, K varies over several orders of
magnitude and its variation with solid volume fraction is not
well characterized near the liquidus. Because the interdendritic
velocity, a measure of the vigor of the flow driving macrosegre-
gation, varies linearly with K (Krane and Incropera, 1996), the
much larger uncertainty in the permeability will have the most
significant effect on the predictions of the composition field in
the cast ingot.

In Fig. 6, measured temperature histories for the 40 percent
Sningot are compared at three thermocouple locations to predic-
tions for k, = 2.8 X 107" m?. It should be noted that the
liquidus temperature for this alloy calculated with a linearized
phase diagram is approximately 1°C lower than that found from
the actual liquidus line. The predicted temperatures decrease
faster than the measured values, especially in the fully liquid
regime at early times, primarily due to the added thermal capac-
ity of the side walls in the experiment. The experimental curves
also have longer periods of eutectic solidification. This effect
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Fig. 7 Predicted macrosegregation and streamline plots for Pb-40%Sn and i, = 2.8 X 107" m?: (a) " at 150 s; (b) F°" at 300 s; and (c) f*" in
solid ingot. (Solid and dashed streamlines depict CCW and CW cells, respectively.)

is due primarily to use of the equilibrium lever law in the
calculations, rather than the Scheil formulation, which correctly
predicts more eutectic formation. While there are some minor
discrepancies in the temperature histories, the overall agreement
is good, in spite of the assumption of no mold-ingot gap. In
fact, no measurable gap developed in the cast ingots, which is
explained by the fact that there was some liquid at the mold
wall until the onset of eutectic freezing very late in the overall
process. Exudation, liquid leaking into any gap which might
form by the differential thermal contraction of the steel mold
and the lead-tin melt, would help to maintain a good thermal
contact.

Progression of the solidification front, solute redistribution,
and flow patterns for k, = 2.8 X 107" m? are shown in Fig.
7. At 150 s, Fig. 7(a), the mushy zone begins to develop
and is accompanied by opposing counterclockwise thermal and
clockwise solutal flow cells. In Fig. 7(b), at 300 s, the thermal
cell has dissipated due to the extinction of the melt superheat,
and the solutal cell, although weakened, dominates the flow.
One smaller and two larger tin-rich segregates are visible in the
final macrosegregation pattern of Figure 7(¢), and there is a
strip at the top of the domain which is very tin-rich. Calculations
of the redistribution of solute with x, = 1.0 X 10~" m? and «,
= 5.0 X 10~ m’® predict fewer and smaller segregates, a smaller
tin-rich region along the top and a decrease in the overall solute
redistribution levels with decreasing k,.

These results can be qualitatively compared with inspection
of the polished surface, which showed only one large (over 10
mm long) A-segregate, as well as several smaller segregates
along the chilled wall. The numerical grid is not fine enough
to resolve the smaller segregates next to the wall, but the ab-
sence of larger segregates in the ingot further from the mold
wall suggests that the actual permeability is lower than that
used for the calculations. The calculated extent of the tin-rich
band along the top of the ingot increases with permeability and,
in the experimental ingot, is similar to predictions made with a
lower permeability.

A quantitative comparison of calculated and measured com-
position fields is provided by the one vertical and three hori-
zontal profiles of Figs. 8(a)— (d). The horizontal profiles span
the distance from the mold wall (x = 0.0 mm) to the ingot
centerline (x = 62.5 mm), while the vertical profile extends
over the entire height of the ingot. The profiles at y = 15 mm,
Fig. 8(a), suggest that the permeability constant is equal to or
less than 5.0 X 107'* m?, as the data fall fairly close to the
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corresponding prediction near the chilled wall and below it
further out. Similar results are found in Fig. 8(b) but, apart
from the datum at x = 11 mm, the experimental results best
match the predicted composition profile for a slightly higher
value of k, in the region closer to the chilled wall. The composi-
tion at x = 11 mm may be due to the influence of a local A-
segregate ascending through the y = 39 mm plane. The compari-
son at y = 69 mm, Fig. 8(c), is more equivocal. Near the plane
of symmetry at x = 62.5 mm, the data are in better agreement
with predictions based on the lower values of «,, while in the
middle of the domain the measurements are in better agreement
with simulations based on the largest permeability constant. It
must be noted, however, that the uncertainty in some of these
measurements exceeds the variation in predictions among the
three values of «,, which differ by only 2 wt%Sn in the middle
of the domain. Near the chilled wall (x < 25 mm), the measure-
ments do not exhibit the sharp spikes seen in the predictions.
This difference could be because the actual permeability, espe-
cially at early times when dendrites are forming near the wall,
is much less than values used in the simulations. It is also
possible that it is because the calculations are a two-dimensional
approximation of an inherently three-dimensional effect. This
finding would be in agreement with visual inspections of the
experimental microstructure, which reveal primarily small A-
segregates. The vertical composition profiles of Fig. 8(d) corre-
spond to x = 19 mm with predictions for the lowest permeability
providing the best agreement with the data. This agreement is
found in the comparison of numerical and experimental compo-
sition values and in the apparent lack of severe A-segregates
near the top of the domain. '

Composition profiles were measured at three different heights
(y = 15 mm, 37 mm, and 57 mm) in the 20 percent Sn ingot.
These results, with the corresponding predictions for all three
permeabilities, are plotted in Fig. 9, and at each height the best
agreement with the data corresponds to predictions for the low-
est permeability («, = 5.0 X 1072 m?). One could attempt to
find the value of x, which gives a best fit to the data, but given
the size of the experimental uncertainty relative to the change
in the profiles with «, such a result would also be extremely
uncertain. However, the foregoing comparison suggests a per-
meability constant less than 1.0 X 107" m?

Having noted that x, = 5.0 X 107'? m* gave the best agree-
ment of the three permeability constants and that an upper bound
on K, is probably not more than twice that value, it is interesting
to compare the presumed dendritic arm spacing from Eq. (7),
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Fig. 8 Composition profiles for Pb-40%Sn: {a) y = 15 mm; (b) y = 39 mm; (¢) y = 69 mm; and {d) x = 19 mm

DAS = 30 pm, with the measured value in the cast ingot.
The experimental dendritic arm spacings are averages of 25
measurements made using the random intercept method at sev-
eral locations in the ingots. The measured spacing for the 40
percent Sn ingot is 174 ym = 21 um, giving a permeability
constant (x, = 1.7 X 107" m* = 0.4 x 107" m?) which is
an order of magnitude larger than the predicted upper bound.
Similarly, the 20 percent Sn ingot has a DAS of 189 ym = 20
pm, or g, = 2.0 X 1079m? + 0.4 X 10" m’. These discrepan-
cies raise serious questions about the Blake-Kozeny permeabil-
ity model. While the trends in the experimental and numerical
results exhibit qualitative agreement in this and other studies
(Shahani et al., 1992; Prescott and Incropera, 1994), the levels
of macrosegregation clearly are not predicted by the current
model if the permeability constant is calculated by Eq. (7) using
measured DAS from the actual casting.

The Blake-Kozeny model of the permeability function used
in the foregoing calculations is derived for laminar flow through
a ‘‘bundle of tangled tubes of weird cross section,”” as described
by Bird et al. (1960). This description certainly fits many den-
dritic arrays found in metal castings, but Bird et al. also state
that the model is only valid for g; > 0.5. Given this restriction
it is reasonable to use this model to predict flow deep in the
mushy zone. Unfortunately, the scaling analysis of the momen-
tum equations (Krane and Incropera, 1996) shows that only
flows very near the liquidus interface are vigorous enough to
affect macrosegregation over the time scale of the solidification
process. There are no experimental data to support the use of
the Blake-Kozeny model for small g, and it is possible that
related predictions of the permeability are inaccurate.
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Another model for the permeability of the mushy zone was
developed by West (1985) who fit his model to measurements
in an Al-4.5%Cu mushy zone (Piwonka and Flemings, 1966)
and showed that it is reasonable for very low solid fractions.
Because West fit his model to only one set of data with no
method of generalizing the results to other systems, the model
cannot be used to simulate the flow in mushy zones of different
alloys or for different casting conditions. However, it is instruc-
tive to examine the behavior of both models in the near liquidus
region. The West model and the Blake-Kozeny model, Eq. (6)
with several values of «,, are plotted in Fig. 10.

While both the West and the Blake-Kozeny models are valid
at higher solid fractions, they predict significantly different be-
havior as g, = 0. As the liquid fraction increases and the flow
resistance decreases, the liquid velocity in the mushy zone be-
comes more vigorous and advection begins to have a significant
effect on the solute redistribution. However, the Blake-Kozeny
function increases much more rapidly than the West model,
which is fitted to experimental data from a metal alloy mushy
zone. While both models yield an infinite permeability as g,
goes to zero, permeabilities based on the West model increase
rapidly only very close to the liquidus interface (g, < 0.01).
This generally slow rise in K with decreasing g, yields values
of permeability near the liquidus (g, < 0.15) comparable to
those given by the Blake-Kozeny model for 1.0 X 107" m* >
K, > 1.0 x 107" m*. This range gives the best agreement
between the experimental and predicted composition profiles in
Figs. 8 and 9.

Calculations were performed for both ingots using the West
model for the permeability function in Egs. (2) and (3), and
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the resulting composition profiles are plotted in Figs. 8 and 9.
In most cases the West permeability function provides better
agreement with the measurements than predictions which used
the Blake-Kozeny model with the measured dendritic arm spac-
ings. However, it is noted again that the dendritic structure from
which West’s function was developed is not characterized well
enough in the original work by Piwonka and Flemings (1966)
to draw definitive conclusions about its applicability. The form
of West’s function is based on flow over spherical particles,
while Piwonka and Fleming’s microstructure was most likely
columnar, Pressure drop experiments would have to be per-
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Fig. 10 Permeability as a function of solid volume fraction

formed on the mushy zone of the alloys in this study to deter-
mine the correct constants for West’s model. However, the
curves in Figs. 8-10 suggest that this function might model
the behavior of permeability of the dendritic array in the most
important region, near the liquidus, much better than the Blake-
Kozeny model.

In addition to the importance of the behavior of the perme-
ability function when g, = 0, another reason the predictions
suggest that the actual DAS is much smaller than that measured
could be dendritic coarsening during solidification (Flemings,
1974). Using the results of an analysis found in that reference,
the time until complete coarsening in the present experiments
was found to be on the order of 4000 s or greater. While the
total solidification time was 1500—2000 s shorter than that time,
some significant coarsening might have occurred, thus increas-
ing the measured DAS. It is not likely, however, that this effect
would account for all of the large discrepancies found between
measured and calculated arm spacings.

Summary

In order to gather experimental data to assess the applicability
of solidification simulations using the continuum mixture model
and equilibrium phase diagrams for binary systems, two metal
ingots (Pb-20%Sn and Pb-40%Sn ) were cast. Using experimen-
tally measured chill wall temperatures as a thermal boundary
condition, numerical simulations of the experiments were per-
formed and comparisons were made to measurements of tem-
perature and composition. Measured temperature histories were
generally in good agreement with the predictions, with devia-
tions attributable to nonequilibrium effects and uncertainty in
the thermophysical properties.

Composition measurements made at several discrete loca-
tions in both ingots did not exhibit consistently good agreement
with the simulations. The macroscopic composition fields are
determined entirely by the advection of species and the domi-
nant parameter influencing the fluid velocity in the mushy zone
is the permeability function. Because of this influence and the
very large uncertainty in the permeability, the constant (x,)
in the Blake-Kozeny model was used as a parameter in the
calculations. Overall, experimental trends in the species mass
fraction distributions were similar to those of the predictions.
However, using values of «, derived from measured dendritic
arm spacings for these two ingots, the local macrosegregation
was overpredicted in all cases. It was concluded that the actual
permeability near the liquidus interface is much lower than
that predicted by the Blake-Kozeny model, due possibly to the
unrealistically rapid rise of the permeability near the liquidus
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surface or to the coarsening of the dendritic structure between
nucleation and final solidification.
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Heated Surface With Spanwise
Temperature Variations

In this paper we consider the effect of a nonuniform surface temperature distribution
on the steady laminar free convection boundary layer flow induced by a vertical

plate embedded in a fluid-saturated porous medium. The surface temperature profile
exhibits sinusoidal variations in the spanwise ( horizontal ) direction, but the minimum
temperature remains above or equal to that of the ambient medium. The resulting
boundary layer flow is three-dimensional, and the governing equations are solved
using a combination of a spanwise spectral decomposition and the Keller-box method.
Detailed results in terms of the evolution of the rates of heat transfer and the devel-
oping thermal field are presented. The numerical work is supplemented by an asymp-
totic analysis valid far downstream where it is found that the effect of nonuniform
heating becomes confined to a thin layer of uniform thickness embedded within the
main growing boundary layer.

1 Introduction

The study of free convection heat transfer from uniform sur-
faces embedded in a saturated porous medium has attracted a
great deal of interest from many investigators over the last two
decades; see Nield and Bejan (1992) for a comprehensive re-
view of this topic. Studies have centered on those cases where
the thermal boundary conditions allow the use of similarity
transformations to reduce the governing equations to a system
of ordinary differential equations. In general, this means that
the heated surface is plane and that the imposed temperature or
surface heat flux satisfies a power-law distribution. However,
in practice, surfaces are sometimes roughened intentionally in
order to enhance the heat transfer. Roughened surfaces are en-
countered in several heat transfer devices such as flat-plate solar
collectors and flat-plate condensers in refrigerators. Larger-scale
surface nonuniformities are encountered in cavity wall insulat-
ing systems and grain storage containers. Similarly, nonunifor-
mities in the boundary conditions in a plane surface may be
obtained by the presence of a nonuniform heat source located
nearby.

There is a growing body of literature devoted to this type
of generic problem. There are now many papers dealing with
boundary nonuniformities in porous channels: Riahi (1993,
1995, 1996) and Rees and Riley (1989a, b) and Rees (1990).
But the first papers to study the effects of such nonuniformities
on thermal boundary layer flow of a Newtonian (clear) fluid
are those of Yao (1983) and Moulic and Yao (1989a, b). More
recently, Chiu and Chou (1993) have extended this work to
micropolar fluids, and Hossain et al. (1996) to a study of magne-
tohydrodynamic flow of a highly electrically-conducting fluid.
In the area of convection in a porous medium, Rees and Pop
(1994a, b, 1995a, b) have considered the effect of wavy surfaces
on the otherwise self-similar free convection boundary layer
flows. When a uniformly heated vertical surface exhibits surface
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waves, the resulting flow does in fact remain self-similar (Rees
and Pop, 1994a), but when inertia effects are included, this
property is lost (Rees and Pop, 1995a). However, when a verti-
cal surface with a uniform heat flux has steady surface waves,
the flow immediately becomes nonsimilar even in the absence
of inertia effects (Rees and Pop, 1995b). In Rees and Pop
(1994b) we considered very small amplitude undulations in a
uniformly heated horizontal surface; in this case there exists the
possibility of separated flow in the lee of the undulations and
conditions were presented to indicate whether or not this would
occur for any particular case.

All the papers quoted so far have been concerned with trans-
verse nonuniformities where the boundary conditions are inde-
pendent of the spanwise direction and, therefore, the resulting
flow is two-dimensional. A more recent paper has considered
the case of longitudinal surface waves (spanwise variations) on
free convection from a vertical surface in a porous medium
(Rees and Pop, 1996). Under a wide range of boundary condi-
tions, the flow remains self-similar, but the authors showed that
this is only true when the boundary layer thickness is asymptoti-
cally smaller than the spanwise wavelength of the nonunifor-
mity. In particular, when the surface temperature is uniform,
this means that nonsimilarity is first obtained at an O(R) dis-
tance from the leading edge, where R is the porous medium
Rayleigh number. In the present paper, we consider a uniform
surface with an imposed surface temperature distribution which
varies sinusoidally in the spanwise direction. Such a configura-
tion could be supposed to model the presence of a hot water
pipe immediately adjacent to a porous insulating cavity such as
a double-skin wall of a house packed with a porous insulant,
although we are unaware of experimental data against which
to compare the present analyses. The resulting flow is three-
dimensional, and we study the boundary layer flow using both
numerical and asymptotic methods.

The formulation of the problem is given in Section 2, while
the detailed description of the numerical method is contained
in Section 3. The numerical results are presented in Section 4.
Section 5 contains the asymptotic analysis for large distances
from the leading edge where we show that the boundary layer
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splits into a two-layer structure. This type of behavior, where
the main boundary layer has a constant thickness near-wall
layer embedded within it, also arises in other contexts. Another
example of such a two-layer structure arises in the study of the
influence of boundary (Brinkman) effects on the vertical free
convection boundary layer in a porous medium, as discussed
by Kim and Vafai (1989). Finally, the results are discussed
briefly in Section 6.

2 Formulation of the Problem

We consider the laminar free-convection boundary layer flow
induced by a vertical heated semi-infinite surface embedded in
a fluid-saturated porous medium. Attention is given to the case
where the surface temperature exhibits sinusoidal variations in
a spanwise direction about a mean value which is above the
temperature of the ambient medium. The resulting flow is three-
dimensional and nonsimilar.

In this paper dealing with three-dimensional boundary layer
flows, we assume that the porous medium is isotropic, uniform,
and nondeformable, that the fluid and the porous matrix are
in local thermal equilibrium, and that inertia, boundary, and
dispersion effects are absent. All of these assumptions may be
relaxed in future work. Additionally, the flow is laminar and
steady; this is a very reasonable assumption given the recent
papers by Rees (1993) and Lewis et al. (1995) which show
that the vertical free convection boundary layer induced by a
uniformly heated surface in a porous medium is stable. It is
possible that boundary effects may modify this qualitative be-
havior, for in the analagous problem of convection in a vertical
channel with sidewall heating (the Darcy-Bénard problem ro-
tated through 90 deg), Kwok and Chen (1987) showed that
uniform Darcy-Brinkman flow is susceptible to instability,
whereas the pure Darcy-flow case is stable (see Gill, 1969 and
Lewis et al., 1995).

The nondimensional equations of motion governing steady
Darcy-Boussinesq free convection flow for this problem are

ou v _c_)z

— + — = 1
ax Oy 1074 0 (14)
u=—2 4 Ry (1b)